Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(14): 6689-6694, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30898887

RESUMO

Given a quantum many-body system with few-body interactions, how rapidly can quantum information be hidden during time evolution? The fast-scrambling conjecture is that the time to thoroughly mix information among N degrees of freedom grows at least logarithmically in N. We derive this inequality for generic quantum systems at infinite temperature, bounding the scrambling time by a finite decay time of local quantum correlations at late times. Using Lieb-Robinson bounds, generalized Sachdev-Ye-Kitaev models, and random unitary circuits, we propose that a logarithmic scrambling time can be achieved in most quantum systems with sparse connectivity. These models also elucidate how quantum chaos is not universally related to scrambling: We construct random few-body circuits with infinite Lyapunov exponent but logarithmic scrambling time. We discuss analogies between quantum models on graphs and quantum black holes and suggest methods to experimentally study scrambling with as many as 100 sparsely connected quantum degrees of freedom.

2.
Phys Rev Lett ; 126(20): 200603, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110181

RESUMO

Fast scramblers are dynamical quantum systems that produce many-body entanglement on a timescale that grows logarithmically with the system size N. We propose and investigate a family of deterministic, fast scrambling quantum circuits realizable in near-term experiments with arrays of neutral atoms. We show that three experimental tools-nearest-neighbor Rydberg interactions, global single-qubit rotations, and shuffling operations facilitated by an auxiliary tweezer array-are sufficient to generate nonlocal interaction graphs capable of scrambling quantum information using only O(logN) parallel applications of nearest-neighbor gates. These tools enable direct experimental access to fast scrambling dynamics in a highly controlled and programmable way and can be harnessed to produce highly entangled states with varied applications.

3.
Phys Rev Lett ; 125(6): 060402, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845652

RESUMO

Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferromagnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the noninteracting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.

4.
Phys Rev Lett ; 122(1): 010405, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012698

RESUMO

We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 µm are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optical resonator. We characterize the system via quench dynamics and imaging of the local magnetization, verifying the coherence of the interactions and demonstrating optical control of their strength and sign. Furthermore, by initializing the spin-1 system in the m_{f}=0 Zeeman state, we observe correlated pair creation in the m_{f}=±1 states, a process analogous to spontaneous parametric down-conversion and to spin mixing in Bose-Einstein condensates. Our work opens new opportunities in quantum simulation with long-range interactions and in entanglement-enhanced metrology.

5.
Phys Rev Lett ; 123(13): 130601, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697527

RESUMO

We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on nonlocal interactions that couple sites whose separation is a power of 2. By controlling the relative strengths of deterministic, nonrandom couplings, we can continuously tune from the linear geometry of a nearest-neighbor spin chain to an ultrametric geometry in which the effective distance between spins is governed by their positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in entanglement and exponentially fast spreading of quantum information across the system. Our proposed implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test case for experimentally observing the emergent geometry of a quantum many-body system.

6.
Phys Rev Lett ; 116(5): 053601, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894711

RESUMO

We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the "one-axis twisting" interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations-e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing-the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA