Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(5): 053602, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595227

RESUMO

The chiral surface states of Weyl semimetals have an open Fermi surface called a Fermi arc. At the interface between two Weyl semimetals, these Fermi arcs are predicted to hybridize and alter their connectivity. In this Letter, we numerically study a one-dimensional (1D) dielectric trilayer grating where the relative displacements between adjacent layers play the role of two synthetic momenta. The lattice emulates 3D crystals without time-reversal symmetry, including Weyl semimetal, nodal line semimetal, and Chern insulator. Besides showing the phase transition between Weyl semimetal and Chern insulator at telecom wavelength, this system allows us to observe the Fermi arc reconstruction between two Weyl semimetals, confirming the theoretical predictions.

2.
Rep Prog Phys ; 78(10): 106001, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26406280

RESUMO

In this review article we describe spin-dependent transport in materials with spin-orbit interaction of Rashba type. We mainly focus on semiconductor heterostructures, however we consider topological insulators, graphene and hybrid structures involving superconductors as well. We start from the Rashba Hamiltonian in a two dimensional electron gas and then describe transport properties of two- and quasi-one-dimensional systems. The problem of spin current generation and interference effects in mesoscopic devices is described in detail. We address also the role of Rashba interaction on localisation effects in lattices with nontrivial topology, as well as on the Ahronov-Casher effect in ring structures. A brief section, in the end, describes also some related topics including the spin-Hall effect, the transition from weak localisation to weak anti localisation and the physics of Majorana fermions in hybrid heterostructures involving Rashba materials in the presence of superconductivity.

3.
Phys Rev Lett ; 100(23): 230601, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643479

RESUMO

We predict the possibility to generate a finite stationary spin current by applying an unbiased ac driving to a quasi-one-dimensional asymmetric periodic structure with Rashba spin-orbit interaction and strong dissipation. We show that under a finite coupling strength between the orbital degrees of freedom the electron dynamics at low temperatures exhibits a pure spin ratchet behavior, i.e., a finite spin current and the absence of charge transport in spatially asymmetric structures. It is also found that the equilibrium spin currents are not destroyed by the presence of strong dissipation.

4.
Phys Rev Lett ; 93(5): 056802, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15323721

RESUMO

We study a quantum network extending in one dimension (chain of square loops connected at one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba effect may give rise to an electron localization phenomenon similar to the one induced by magnetic field. This localization effect can be attributed to the spin precession due to the Rashba effect. We present results both for the spectral properties of the infinite chain and for linear transport through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the transport properties of this network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA