Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(15): 2840-2840.e1, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868280

RESUMO

Spatially resolved transcriptomics methodologies using RNA sequencing principles have and will continue to contribute to decode the molecular landscape of tissues. Linking quantitative sequencing data with tissue morphology empowers profiling of cellular morphology and transcription over time and space in health and disease. To view this SnapShot, open or download the PDF.


Assuntos
Transcriptoma , Animais , Humanos , Análise de Sequência de RNA , Análise Espacial
2.
Nature ; 608(7922): 360-367, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948708

RESUMO

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.


Assuntos
Células Clonais , Variações do Número de Cópias de DNA , Instabilidade Genômica , Neoplasias , Análise Espacial , Células Clonais/metabolismo , Células Clonais/patologia , Variações do Número de Cópias de DNA/genética , Detecção Precoce de Câncer , Genoma Humano , Instabilidade Genômica/genética , Genômica , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma/genética
3.
Nat Methods ; 21(4): 673-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438615

RESUMO

Spatial landmarks are crucial in describing histological features between samples or sites, tracking regions of interest in microscopy, and registering tissue samples within a common coordinate framework. Although other studies have explored unsupervised landmark detection, existing methods are not well-suited for histological image data as they often require a large number of images to converge, are unable to handle nonlinear deformations between tissue sections and are ineffective for z-stack alignment, other modalities beyond image data or multimodal data. We address these challenges by introducing effortless landmark detection, a new unsupervised landmark detection and registration method using neural-network-guided thin-plate splines. Our proposed method is evaluated on a diverse range of datasets including histology and spatially resolved transcriptomics, demonstrating superior performance in both accuracy and stability compared to existing approaches.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos
4.
Nat Methods ; 16(10): 987-990, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501547

RESUMO

Spatial and molecular characteristics determine tissue function, yet high-resolution methods to capture both concurrently are lacking. Here, we developed high-definition spatial transcriptomics, which captures RNA from histological tissue sections on a dense, spatially barcoded bead array. Each experiment recovers several hundred thousand transcript-coupled spatial barcodes at 2-µm resolution, as demonstrated in mouse brain and primary breast cancer. This opens the way to high-resolution spatial analysis of cells and tissues.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Bulbo Olfatório/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise Serial de Tecidos
5.
BMC Bioinformatics ; 21(1): 161, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349652

RESUMO

BACKGROUND: Technological developments in the emerging field of spatial transcriptomics have opened up an unexplored landscape where transcript information is put in a spatial context. Clustering commonly constitutes a central component in analyzing this type of data. However, deciding on the number of clusters to use and interpreting their relationships can be difficult. RESULTS: We introduce SpatialCPie, an R package designed to facilitate cluster evaluation for spatial transcriptomics data. SpatialCPie clusters the data at multiple resolutions. The results are visualized with pie charts that indicate the similarity between spatial regions and clusters and a cluster graph that shows the relationships between clusters at different resolutions. We demonstrate SpatialCPie on several publicly available datasets. CONCLUSIONS: SpatialCPie provides intuitive visualizations of cluster relationships when dealing with Spatial Transcriptomics data.


Assuntos
Software , Transcriptoma/genética , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Humanos
6.
BMC Genomics ; 21(1): 298, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293264

RESUMO

BACKGROUND: Interest in studying the spatial distribution of gene expression in tissues is rapidly increasing. Spatial Transcriptomics is a novel sequencing-based technology that generates high-throughput information on the distribution, heterogeneity and co-expression of cells in tissues. Unfortunately, manual preparation of high-quality sequencing libraries is time-consuming and subject to technical variability due to human error during manual pipetting, which results in sample swapping and the accidental introduction of batch effects. All these factors complicate the production and interpretation of biological datasets. RESULTS: We have integrated an Agilent Bravo Automated Liquid Handling Platform into the Spatial Transcriptomics workflow. Compared to the previously reported Magnatrix 8000+ automated protocol, this approach increases the number of samples processed per run, reduces sample preparation time by 35%, and minimizes batch effects between samples. The new approach is also shown to be highly accurate and almost completely free from technical variability between prepared samples. CONCLUSIONS: The new automated Spatial Transcriptomics protocol using the Agilent Bravo Automated Liquid Handling Platform rapidly generates high-quality Spatial Transcriptomics libraries. Given the wide use of the Agilent Bravo Automated Liquid Handling Platform in research laboratories and facilities, this will allow many researchers to quickly create robust Spatial Transcriptomics libraries.


Assuntos
Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Animais , Automação , Biologia Computacional , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Robótica
7.
Bioinformatics ; 34(11): 1966-1968, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360929

RESUMO

Motiviation: Spatial Transcriptomics (ST) is a method which combines high resolution tissue imaging with high troughput transcriptome sequencing data. This data must be aligned with the images for correct visualization, a process that involves several manual steps. Results: Here we present ST Spot Detector, a web tool that automates and facilitates this alignment through a user friendly interface. Contact: jose.fernandez.navarro@scilifelab.se. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica/métodos , Interpretação de Imagem Assistida por Computador/métodos , Software , Animais , Humanos , Internet , Plantas , Análise de Sequência de RNA/métodos , Análise Espacial
8.
Nat Biotechnol ; 40(4): 476-479, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845373

RESUMO

Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone.


Assuntos
Transcriptoma , Transcriptoma/genética
9.
Nat Commun ; 13(1): 5475, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115838

RESUMO

The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Células Clonais/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Análise Espaço-Temporal
10.
Nat Med ; 27(3): 546-559, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33654293

RESUMO

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Assuntos
COVID-19/epidemiologia , COVID-19/genética , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/fisiologia , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/estatística & dados numéricos , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Catepsina L/genética , Catepsina L/metabolismo , Conjuntos de Dados como Assunto/estatística & dados numéricos , Demografia , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Análise de Sequência de RNA/métodos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Análise de Célula Única/métodos
11.
Commun Biol ; 3(1): 565, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037292

RESUMO

The field of spatial transcriptomics is rapidly expanding, and with it the repertoire of available technologies. However, several of the transcriptome-wide spatial assays do not operate on a single cell level, but rather produce data comprised of contributions from a - potentially heterogeneous - mixture of cells. Still, these techniques are attractive to use when examining complex tissue specimens with diverse cell populations, where complete expression profiles are required to properly capture their richness. Motivated by an interest to put gene expression into context and delineate the spatial arrangement of cell types within a tissue, we here present a model-based probabilistic method that uses single cell data to deconvolve the cell mixtures in spatial data. To illustrate the capacity of our method, we use data from different experimental platforms and spatially map cell types from the mouse brain and developmental heart, which arrange as expected.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Animais , Biologia Computacional/métodos , Biologia Computacional/normas , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Especificidade de Órgãos , Organogênese/genética , Análise de Célula Única/métodos , Análise de Célula Única/normas
12.
Nat Biomed Eng ; 4(8): 827-834, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572199

RESUMO

Spatial transcriptomics allows for the measurement of RNA abundance at a high spatial resolution, making it possible to systematically link the morphology of cellular neighbourhoods and spatially localized gene expression. Here, we report the development of a deep learning algorithm for the prediction of local gene expression from haematoxylin-and-eosin-stained histopathology images using a new dataset of 30,612 spatially resolved gene expression data matched to histopathology images from 23 patients with breast cancer. We identified over 100 genes, including known breast cancer biomarkers of intratumoral heterogeneity and the co-localization of tumour growth and immune activation, the expression of which can be predicted from the histopathology images at a resolution of 100 µm. We also show that the algorithm generalizes well to The Cancer Genome Atlas and to other breast cancer gene expression datasets without the need for re-training. Predicting the spatially resolved transcriptome of a tissue directly from tissue images may enable image-based screening for molecular biomarkers with spatial variation.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Aprendizado Profundo , Algoritmos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA