Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
EMBO J ; 41(13): e109996, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35767364

RESUMO

Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R-spondin 3 (Rspo3) signaling. This causes an expansion of the "gland base module," which consists of self-renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R-spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF-κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4-driven NF-κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R-spondin-Lgr and NF-κB signaling that links epithelial stem cell behavior and inflammatory responses to gland-invading H. pylori.


Assuntos
Helicobacter pylori , Animais , Hiperplasia/metabolismo , Hiperplasia/patologia , Inflamação/patologia , Camundongos , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Estômago
2.
Hepatology ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231043

RESUMO

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

3.
EMBO J ; 39(6): e104013, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32009247

RESUMO

High-grade serous ovarian cancer (HGSOC) likely originates from the fallopian tube (FT) epithelium. Here, we established 15 organoid lines from HGSOC primary tumor deposits that closely match the mutational profile and phenotype of the parental tumor. We found that Wnt pathway activation leads to growth arrest of these cancer organoids. Moreover, active BMP signaling is almost always required for the generation of HGSOC organoids, while healthy fallopian tube organoids depend on BMP suppression by Noggin. Fallopian tube organoids modified by stable shRNA knockdown of p53, PTEN, and retinoblastoma protein (RB) also require a low-Wnt environment for long-term growth, while fallopian tube organoid medium triggers growth arrest. Thus, early changes in the stem cell niche environment are needed to support outgrowth of these genetically altered cells. Indeed, comparative analysis of gene expression pattern and phenotypes of normal vs. loss-of-function organoids confirmed that depletion of tumor suppressors triggers changes in the regulation of stemness and differentiation.


Assuntos
Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt/genética , Carcinogênese/genética , Diferenciação Celular , Progressão da Doença , Epitélio/patologia , Tubas Uterinas/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Organoides/patologia , Neoplasias Ovarianas/patologia , Fenótipo , Nicho de Células-Tronco
4.
Hepatology ; 78(1): 150-166, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630995

RESUMO

BACKGROUND AND AIMS: The progression of chronic liver diseases towards liver cirrhosis is accompanied by drastic tissue changes. This study combines elaborate transcriptomic and histological methods aiming at spatially resolving the hepatic immune microenvironment in NAFLD (including NASH, primary sclerosing cholangitis, primary biliary cholangitis, and severe alcoholic hepatitis). APPROACH AND RESULTS: Human liver samples were subjected to RNA-sequencing (n=225) and imaging cytometry (n=99) across 3 independent patient cohorts. Liver samples from alcoholic hepatitis and primary biliary cholangitis patients were used for comparison. Myeloid populations were further characterized in corresponding mouse models. Imaging, clinical, and phenotypical data were combined for multidimensional analysis. NAFLD/NASH and primary sclerosing cholangitis disease stages were associated with loss of parenchymal areas, increased ductular cell accumulation, and infiltration of immune cells. NASH patients predominantly exhibited myeloid cell accumulation, whereas primary sclerosing cholangitis patients additionally had pronounced lymphoid cell responses. Correlating to disease stage, both etiologies displayed intense IBA1 + CD16 low CD163 low macrophage aggregation in nonparenchymal areas, with a distinct spatial proximity to ductular cells. Mouse models revealed that disease-associated IBA1 + hepatic macrophages originated from bone marrow-derived monocytes. Using an unbiased, machine learning-based algorithm, IBA1 in combination with hepatocyte and ductular cell immunostaining-predicted advanced cirrhosis in human NASH, primary sclerosing cholangitis, and alcoholic hepatitis. CONCLUSIONS: Loss of hepatocytes and increased ductular reaction are tightly associated with monocyte-derived macrophage accumulation and represent the most prominent common immunological feature revealing the progression of NAFLD, primary sclerosing cholangitis, primary biliary cholangitis, and alcoholic hepatitis, suggesting IBA1 + CD163 low macrophages are key pathogenic drivers of human liver disease progression across diverse etiologies.


Assuntos
Colangite Esclerosante , Hepatite Alcoólica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Colangite Esclerosante/patologia , Hepatite Alcoólica/patologia , Fígado/patologia , Cirrose Hepática/complicações , Macrófagos , Modelos Animais de Doenças
5.
Nature ; 548(7668): 451-455, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28813421

RESUMO

The constant regeneration of stomach epithelium is driven by long-lived stem cells, but the mechanism that regulates their turnover is not well understood. We have recently found that the gastric pathogen Helicobacter pylori can activate gastric stem cells and increase epithelial turnover, while Wnt signalling is known to be important for stem cell identity and epithelial regeneration in several tissues. Here we find that antral Wnt signalling, marked by the classic Wnt target gene Axin2, is limited to the base and lower isthmus of gastric glands, where the stem cells reside. Axin2 is expressed by Lgr5+ cells, as well as adjacent, highly proliferative Lgr5- cells that are able to repopulate entire glands, including the base, upon depletion of the Lgr5+ population. Expression of both Axin2 and Lgr5 requires stroma-derived R-spondin 3 produced by gastric myofibroblasts proximal to the stem cell compartment. Exogenous R-spondin administration expands and accelerates proliferation of Axin2+/Lgr5- but not Lgr5+ cells. Consistent with these observations, H. pylori infection increases stromal R-spondin 3 expression and expands the Axin2+ cell pool to cause hyperproliferation and gland hyperplasia. The ability of stromal niche cells to control and adapt epithelial stem cell dynamics constitutes a sophisticated mechanism that orchestrates epithelial regeneration and maintenance of tissue integrity.


Assuntos
Infecções por Helicobacter/metabolismo , Homeostase , Células-Tronco/citologia , Células-Tronco/metabolismo , Estômago/citologia , Células Estromais/metabolismo , Trombospondinas/metabolismo , Animais , Proteína Axina/metabolismo , Proliferação de Células , Células Epiteliais/citologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Antro Pilórico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco , Células Estromais/citologia , Via de Sinalização Wnt
6.
Gut ; 68(3): 400-413, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29467166

RESUMO

OBJECTIVE: Helicobacter pylori causes life-long colonisation of the gastric mucosa, leading to chronic inflammation with increased risk of gastric cancer. Research on the pathogenesis of this infection would strongly benefit from an authentic human in vitro model. DESIGN: Antrum-derived gastric glands from surgery specimens served to establish polarised epithelial monolayers via a transient air-liquid interface culture stage to study cross-talk with H. pylori and the adjacent stroma. RESULTS: The resulting 'mucosoid cultures', so named because they recapitulate key characteristics of the gastric mucosa, represent normal stem cell-driven cultures that can be passaged for months. These highly polarised columnar epithelial layers encompass the various gastric antral cell types and secrete mucus at the apical surface. By default, they differentiate towards a foveolar, MUC5AC-producing phenotype, whereas Wnt signalling stimulates proliferation of MUC6-producing cells and preserves stemness-reminiscent of the gland base. Stromal cells from the lamina propria secrete Wnt inhibitors, antagonising stem-cell niche signalling and inducing differentiation. On infection with H. pylori, a strong inflammatory response is induced preferentially in the undifferentiated basal cell phenotype. Infection of cultures for several weeks produces foci of viable bacteria and a persistent inflammatory condition, while the secreted mucus establishes a barrier that only few bacteria manage to overcome. CONCLUSION: Gastric mucosoid cultures faithfully reproduce the features of normal human gastric epithelium, enabling new approaches for investigating the interaction of H. pylori with the epithelial surface and the cross-talk with the basolateral stromal compartment. Our observations provide striking insights in the regulatory circuits of inflammation and defence.


Assuntos
Mucosa Gástrica/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/metabolismo , Homeostase/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Muco/metabolismo , Antro Pilórico/metabolismo , Antro Pilórico/microbiologia , Antro Pilórico/patologia , Nicho de Células-Tronco , Células Estromais/fisiologia , Técnicas de Cultura de Tecidos/métodos
7.
Mol Microbiol ; 99(1): 151-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26374382

RESUMO

Simkania negevensis is an obligate intracellular bacterial pathogen that grows in amoeba or human cells within a membrane-bound vacuole forming endoplasmic reticulum (ER) contact sites. The membrane of this Simkania-containing vacuole (SnCV) is a critical host-pathogen interface whose origin and molecular interactions with cellular organelles remain poorly defined. We performed proteomic analysis of purified ER-SnCV-membranes using label free LC-MS(2) to define the pathogen-containing organelle composition. Of the 1,178 proteins of human and 302 proteins of Simkania origin identified by this strategy, 51 host cell proteins were enriched or depleted by infection and 57 proteins were associated with host endosomal transport pathways. Chemical inhibitors that selectively interfere with trafficking at the early endosome-to-trans-Golgi network (TGN) interface (retrograde transport) affected SnCV formation, morphology and lipid transport. Our data demonstrate that Simkania exploits early endosome-to-TGN transport for nutrient acquisition and growth.


Assuntos
Chlamydiales/crescimento & desenvolvimento , Membranas Intracelulares/química , Proteoma/análise , Vacúolos/química , Vacúolos/microbiologia , Cromatografia Líquida , Células HeLa , Humanos , Espectrometria de Massas , Proteômica
8.
Gut ; 65(2): 202-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25539675

RESUMO

BACKGROUND AND AIMS: Helicobacter pylori is the causative agent of gastric diseases and the main risk factor in the development of gastric adenocarcinoma. In vitro studies with this bacterial pathogen largely rely on the use of transformed cell lines as infection model. However, this approach is intrinsically artificial and especially inappropriate when it comes to investigating the mechanisms of cancerogenesis. Moreover, common cell lines are often defective in crucial signalling pathways relevant to infection and cancer. A long-lived primary cell system would be preferable in order to better approximate the human in vivo situation. METHODS: Gastric glands were isolated from healthy human stomach tissue and grown in Matrigel containing media supplemented with various growth factors, developmental regulators and apoptosis inhibitors to generate long-lasting normal epithelial cell cultures. RESULTS: Culture conditions were developed which support the formation and quasi-indefinite growth of three dimensional (3D) spheroids derived from various sites of the human stomach. Spheroids could be differentiated to gastric organoids after withdrawal of Wnt3A and R-spondin1 from the medium. The 3D cultures exhibit typical morphological features of human stomach tissue. Transfer of sheared spheroids into 2D culture led to the formation of dense planar cultures of polarised epithelial cells serving as a suitable in vitro model of H. pylori infection. CONCLUSIONS: A robust and quasi-immortal 3D organoid model has been established, which is considered instrumental for future research aimed to understand the underlying mechanisms of infection, mucosal immunity and cancer of the human stomach.


Assuntos
Adenocarcinoma/microbiologia , Infecções por Helicobacter/microbiologia , Neoplasias Gástricas/microbiologia , Estômago/citologia , Linhagem Celular , Células Cultivadas , Meios de Cultura , Mucosa Gástrica/citologia , Helicobacter pylori/crescimento & desenvolvimento , Humanos , Modelos Biológicos , Antro Pilórico/citologia
9.
Helicobacter ; 21 Suppl 1: 34-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27531537

RESUMO

Gastric cancer (GC) results from a multistep process that is influenced by Helicobacter pylori infection, genetic susceptibility of the host, as well as of other environmental factors. GC results from the accumulation of numerous genetic and epigenetic alterations in oncogenes and tumor suppressor genes, leading to dysregulation of multiple signaling pathways, which disrupt the cell cycle and the balance between cell proliferation and cell death. For this special issue, we have selected to review last year's advances related to three main topics: the cell of origin that initiates malignant growth in GC, the mechanisms of direct genotoxicity induced by H. pylori infection, and the role of aberrantly expressed long noncoding RNAs in GC transformation. The understanding of the molecular basis of GC development is of utmost importance for the identification of novel targets for GC prevention and treatment.


Assuntos
Carcinogênese , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Humanos
10.
Blood ; 118(1): 139-47, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21487109

RESUMO

The prognosis of germinal center-derived B-cell (GCB) lymphomas, including follicular lymphoma and diffuse large-B-cell lymphoma (DLBCL), strongly depends on age. Children have a more favorable outcome than adults. It is not known whether this is because of differences in host characteristics, treatment protocols, or tumor biology, including the presence of chromosomal alterations. By screening for novel IGH translocation partners in pediatric and adult lymphomas, we identified chromosomal translocations juxtaposing the IRF4 oncogene next to one of the immunoglobulin (IG) loci as a novel recurrent aberration in mature B-cell lymphoma. FISH revealed 20 of 427 lymphomas to carry an IG/IRF4-fusion. Those were predominantly GCB-type DLBCL or follicular lymphoma grade 3, shared strong expression of IRF4/MUM1 and BCL6, and lacked PRDM1/BLIMP1 expression and t(14;18)/BCL2 breaks. BCL6 aberrations were common. The gene expression profile of IG/IRF4-positive lymphomas differed from other subtypes of DLBCL. A classifier for IG/IRF4 positivity containing 27 genes allowed accurate prediction. IG/IRF4 positivity was associated with young age and a favorable outcome. Our results suggest IRF4 translocations to be primary alterations in a molecularly defined subset of GCB-derived lymphomas. The probability for this subtype of lymphoma significantly decreases with age, suggesting that diversity in tumor biology might contribute to the age-dependent differences in prognosis of lymphoma.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina/genética , Centro Germinativo/patologia , Fatores Reguladores de Interferon/genética , Linfoma de Células B/genética , Linfoma de Células B/patologia , Translocação Genética , Adolescente , Adulto , Idade de Início , Idoso , Sequência de Bases , Criança , Pré-Escolar , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 6 , Feminino , Genes de Cadeia Pesada de Imunoglobulina/imunologia , Humanos , Fatores Reguladores de Interferon/imunologia , Linfoma de Células B/imunologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/genética , Prognóstico , Adulto Jovem
11.
Gut Microbes ; 15(1): 2233689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427832

RESUMO

Colibactin, a bacterial genotoxin produced by E. coli strains harboring the pks genomic island, induces cytopathic effects, such as DNA breaks, cell cycle arrest, and apoptosis. Patients with inflammatory bowel diseases, such as ulcerative colitis, display changes in their microbiota with the expansion of E. coli. Whether and how colibactin affects the integrity of the colonic mucosa and whether pks+ E. coli contributes to the pathogenesis of colitis is not clear. Using a gnotobiotic mouse model, we show that under homeostatic conditions, pks+ E. coli do not directly interact with the epithelium or affect colonic integrity. However, upon short-term chemical disruption of mucosal integrity, pks+ E. coli gain direct access to the epithelium, causing epithelial injury and chronic colitis, while mice colonized with an isogenic ΔclbR mutant incapable of producing colibactin show a rapid recovery. pks+ E. coli colonized mice are unable to reestablish a functional barrier. In turn, pks+ E. coli remains in direct contact with the epithelium, perpetuating the process and triggering chronic mucosal inflammation that morphologically and transcriptionally resembles human ulcerative colitis. This state is characterized by impaired epithelial differentiation and high proliferative activity, which is associated with high levels of stromal R-spondin 3. Genetic overexpression of R-spondin 3 in colon myofibroblasts is sufficient to mimic barrier disruption and expansion of E. coli. Together, our data reveal that pks+ E. coli are pathobionts that promote severe injury and initiate a proinflammatory trajectory upon contact with the colonic epithelium, resulting in a chronic impairment of tissue integrity.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Policetídeos , Humanos , Camundongos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Colite Ulcerativa/patologia , Policetídeos/metabolismo , Mucosa Intestinal/metabolismo
12.
JHEP Rep ; 5(11): 100883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860052

RESUMO

Background & Aims: HBV infection is one of the leading causes of liver cirrhosis. However, the immune microenvironment in patients with HBV cirrhosis remains elusive. Methods: Single-cell RNA sequencing was used to analyse the transcriptomes of 76,210 immune cells in the livers of six healthy individuals and in five patients with HBV cirrhosis. Results: Patients with HBV cirrhosis have a unique immune ecosystem characterised by an accumulation of macrophage-CD9/IL18, macrophage-C1QA, NK Cell-JUNB, CD4+ T cell-IL7R, and a loss of B cell-IGLC1 clusters. Furthermore, our analysis predicted enhanced cell communication between myeloid cells and all immune cells in patients with HBV-related cirrhosis. Pseudo-time analysis of myeloid cells, natural killer (NK) cells, and B cells demonstrated a significant accumulation of mature cells and a depletion of naive cells in HBV cirrhosis. In addition, we observed an increase in antigen processing and presentation capacities in myeloid cells in patients with HBV cirrhosis, whereas NK cell-mediated cytotoxicity was substantially reduced. Conclusions: Our results provide valuable insight into the immune landscape of HBV cirrhosis, suggesting that HBV cirrhosis is associated with the accumulation of activated myeloid cells and impaired cytotoxicity in NK cells. Impact and implications: The absence of single-cell transcriptome profiling of immune cells in HBV cirrhosis hinders our understanding of the underlying mechanisms driving disease progression. To address this knowledge gap, our study unveils a distinctive immune ecosystem in HBV cirrhosis and represents a crucial advancement in elucidating the impact of the immune milieu on the development of this condition. These findings constitute significant strides towards the identification of more effective therapeutic approaches for HBV cirrhosis and are relevant for healthcare professionals, researchers, and pharmaceutical developers dedicated to combating this disease.

13.
Nat Commun ; 14(1): 3025, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230989

RESUMO

The cellular organization of gastrointestinal crypts is orchestrated by different cells of the stromal niche but available in vitro models fail to fully recapitulate the interplay between epithelium and stroma. Here, we establish a colon assembloid system comprising the epithelium and diverse stromal cell subtypes. These assembloids recapitulate the development of mature crypts resembling in vivo cellular diversity and organization, including maintenance of a stem/progenitor cell compartment in the base and their maturation into secretory/absorptive cell types. This process is supported by self-organizing stromal cells around the crypts that resemble in vivo organization, with cell types that support stem cell turnover adjacent to the stem cell compartment. Assembloids that lack BMP receptors either in epithelial or stromal cells fail to undergo proper crypt formation. Our data highlight the crucial role of bidirectional signaling between epithelium and stroma, with BMP as a central determinant of compartmentalization along the crypt axis.


Assuntos
Trato Gastrointestinal , Mucosa Intestinal , Diferenciação Celular , Mucosa Intestinal/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
14.
Front Immunol ; 14: 1281646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090581

RESUMO

Cervical cancer is a leading cause of death among women globally, primarily driven by high-risk papillomaviruses. However, the effectiveness of chemotherapy is limited, underscoring the potential of personalized immunotherapies. Patient-derived organoids, which possess cellular heterogeneity, proper epithelial architecture and functionality, and long-term propagation capabilities offer a promising platform for developing viable strategies. In addition to αß T cells and natural killer (NK) cells, γδ T cells represent an immune cell population with significant therapeutic potential against both hematologic and solid tumours. To evaluate the efficacy of γδ T cells in cervical cancer treatment, we generated patient-derived healthy and cancer ectocervical organoids. Furthermore, we examined transformed healthy organoids, expressing HPV16 oncogenes E6 and E7. We analysed the effector function of in vitro expanded γδ T cells upon co-culture with organoids. Our findings demonstrated that healthy cervical organoids were less susceptible to γδ T cell-mediated cytotoxicity compared to HPV-transformed organoids and cancerous organoids. To identify the underlying pathways involved in this observed cytotoxicity, we performed bulk-RNA sequencing on the organoid lines, revealing differences in DNA-damage and cell cycle checkpoint pathways, as well as transcription of potential γδ T cell ligands. We validated these results using immunoblotting and flow cytometry. We also demonstrated the involvement of BTN3A1 and BTN2A1, crucial molecules for γδ T cell activation, as well as differential expression of PDL1/CD274 in cancer, E6/E7+ and healthy organoids. Interestingly, we observed a significant reduction in cytotoxicity upon blocking MSH2, a protein involved in DNA mismatch-repair. In summary, we established a co-culture system of γδ T cells with cervical cancer organoids, providing a novel in vitro model to optimize innovative patient-specific immunotherapies for cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Proteínas E7 de Papillomavirus/genética , Colo do Útero/metabolismo , Organoides/metabolismo , DNA , Butirofilinas , Antígenos CD
15.
Cell Death Dis ; 14(8): 549, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620309

RESUMO

Hepatocellular carcinoma (HCC) is one of the most severe malignancies with increasing incidence and limited treatment options. Typically, HCC develops during a multistep process involving chronic liver inflammation and liver fibrosis. The latter is characterized by the accumulation of extracellular matrix produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs in an ordered sequence that is highly regulated by cyclins and associated cyclin-dependent kinases (CDKs) such as the Cyclin E1 (CCNE1)/CDK2 kinase complex. In the present study, we examined the role of Cyclin E1 (Ccne1) and Cdk2 genes in HSCs for liver fibrogenesis and hepatocarcinogenesis. To this end, we generated conditional knockout mice lacking Ccne1 or Cdk2 specifically in HSCs (Ccne1∆HSC or Cdk2∆HSC). Ccne1∆HSC mice showed significantly reduced liver fibrosis formation and attenuated HSC activation in the carbon tetrachloride (CCl4) model. In a combined model of fibrosis-driven hepatocarcinogenesis, Ccne1∆HSC mice revealed decreased HSC activation even after long-term observation and substantially reduced tumor load in the liver when compared to wild-type controls. Importantly, the deletion of Cdk2 in HSCs also resulted in attenuated liver fibrosis after chronic CCl4 treatment. Single-cell RNA sequencing revealed that only a small fraction of HSCs expressed Ccne1/Cdk2 at a distinct time point after CCl4 treatment. In summary, we provide evidence that Ccne1 expression in a small population of HSCs is sufficient to trigger extensive liver fibrosis and hepatocarcinogenesis in a Cdk2-dependent manner. Thus, HSC-specific targeting of Ccne1 or Cdk2 in patients with liver fibrosis and high risk for HCC development could be therapeutically beneficial.


Assuntos
Carcinoma Hepatocelular , Ciclina E , Cirrose Hepática , Neoplasias Hepáticas , Animais , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Células Estreladas do Fígado , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Ciclina E/genética
16.
Methods Mol Biol ; 2455: 181-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35212995

RESUMO

Single cell RNA sequencing (scRNA-seq) allows to uncover cellular heterogeneity and the identification of novel subpopulations. In non-alcoholic steatohepatitis (NASH), scRNA-seq is particularly powerful to understand non-parenchymal cell heterogeneity in the liver, e.g. for inflammatory cells. Myeloid immune cells, particularly macrophages, play a critical role in response of the innate immune system and significantly contribute to the progression of fatty liver disease. Due to their high heterogeneity and complex phenotypes, their functional role in health and disease is difficult to analyze. Here, we describe the isolation and analysis of myeloid cell populations from mouse liver using microdroplet-based scRNA-seq. This approach allows the identification and characterization of different hepatic cell types, exemplified here by hepatic macrophage populations, as well as analyses of differentially expressed genes between samples (e.g., cells from healthy or NASH livers).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Células de Kupffer/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Análise de Sequência de RNA
17.
Clin Epigenetics ; 14(1): 193, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585699

RESUMO

BACKGROUND: Epigenetic modifications in mammalian DNA are commonly manifested by DNA methylation. In the stomach, altered DNA methylation patterns have been observed following chronic Helicobacter pylori infections and in gastric cancer. In the context of epigenetic regulation, the regional nature of the stomach has been rarely considered in detail. RESULTS: Here, we establish gastric mucosa derived primary cell cultures as a reliable source of native human epithelium. We describe the DNA methylation landscape across the phenotypically different regions of the healthy human stomach, i.e., antrum, corpus, fundus together with the corresponding transcriptomes. We show that stable regional DNA methylation differences translate to a limited extent into regulation of the transcriptomic phenotype, indicating a largely permissive epigenetic regulation. We identify a small number of transcription factors with novel region-specific activity and likely epigenetic impact in the stomach, including GATA4, IRX5, IRX2, PDX1 and CDX2. Detailed analysis of the Wnt pathway reveals differential regulation along the craniocaudal axis, which involves non-canonical Wnt signaling in determining cell fate in the proximal stomach. By extending our analysis to pre-neoplastic lesions and gastric cancers, we conclude that epigenetic dysregulation characterizes intestinal metaplasia as a founding basis for functional changes in gastric cancer. We present insights into the dynamics of DNA methylation across anatomical regions of the healthy stomach and patterns of its change in disease. Finally, our study provides a well-defined resource of regional stomach transcription and epigenetics.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Metilação de DNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Epigênese Genética , Infecções por Helicobacter/genética , Células Epiteliais/patologia , Mamíferos
18.
Nat Commun ; 13(1): 1577, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332152

RESUMO

Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection. We find that gastric epithelial stem cell differentiation is orchestrated by subsets of stromal cells that either produce BMP inhibitors in the gland base, or BMP ligands at the surface. Exposure to BMP ligands promotes a feed-forward loop by inducing Bmp2 expression in the epithelial cells themselves, enforcing rapid lineage commitment to terminally differentiated mucous pit cells. H. pylori leads to a loss of stromal and epithelial Bmp2 expression and increases expression of BMP inhibitors, promoting self-renewal of stem cells and accumulation of gland base cells, which we mechanistically link to IFN-γ signaling. Mice that lack IFN-γ signaling show no alterations of BMP gradient upon infection, while exposure to IFN-γ resembles H. pylori-driven mucosal responses.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Inflamação/metabolismo , Ligantes , Camundongos
19.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099044

RESUMO

The stomach corpus epithelium is organized into anatomical units that consist of glands and pits. Mechanisms that control the cellular organization of corpus glands and enable their recovery upon injury are not well understood. R-spondin 3 (RSPO3) is a WNT-signaling enhancer that regulates stem cell behavior in different organs. Here, we investigated the function of RSPO3 in the corpus during homeostasis, upon chief and/or parietal cell loss, and during chronic Helicobacter pylori infection. Using organoid culture and conditional mouse models, we demonstrate that RSPO3 is a critical driver of secretory cell differentiation in the corpus gland toward parietal and chief cells, while its absence promoted pit cell differentiation. Acute loss of chief and parietal cells induced by high dose tamoxifen - or merely the depletion of LGR5+ chief cells - caused an upregulation of RSPO3 expression, which was required for the initiation of a coordinated regenerative response via the activation of yes-associated protein (YAP) signaling. This response enabled a rapid recovery of the injured secretory gland cells. However, in the context of chronic H. pylori infection, the R-spondin-driven regeneration was maintained long term, promoting severe glandular hyperproliferation and the development of premalignant metaplasia.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Camundongos , Animais , Helicobacter pylori/metabolismo , Infecções por Helicobacter/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Gástrica/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Estômago/patologia , Regeneração , Neoplasias Gástricas/metabolismo
20.
Nat Commun ; 13(1): 1030, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210413

RESUMO

Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.


Assuntos
Chlamydia , Coinfecção , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Reprogramação Celular/genética , Feminino , Papillomavirus Humano 16/genética , Humanos , Organoides , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA