Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Infect Immun ; 89(12): e0043021, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543120

RESUMO

Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Yersiniose/microbiologia , Yersinia/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Suscetibilidade a Doenças , Humanos , Mutação , Virulência/genética , Fatores de Virulência , Yersinia/patogenicidade
2.
Infect Immun ; 83(2): 614-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422267

RESUMO

Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 10(6) CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 10(6) CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen.


Assuntos
Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Pneumonia/patologia , Infecções por Serratia/imunologia , Serratia marcescens/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Infecção Hospitalar , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Hemorragia/microbiologia , Hemorragia/patologia , Inflamação/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , Pneumonia/mortalidade , Infecções por Serratia/microbiologia , Infecções por Serratia/mortalidade , Serratia marcescens/patogenicidade
3.
PLoS Pathog ; 8(8): e1002828, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876175

RESUMO

A highly conserved virulence plasmid encoding a type III secretion system is shared by the three Yersinia species most pathogenic for mammals. Although factors encoded on this plasmid enhance the ability of Yersinia to thrive in their mammalian hosts, the loss of this virulence plasmid does not eliminate growth or survival in host organs. Most notably, yields of viable plasmid-deficient Yersinia pseudotuberculosis (Yptb) are indistinguishable from wild-type Yptb within mesenteric lymph nodes. To identify chromosomal virulence factors that allow for plasmid-independent survival during systemic infection of mice, we generated transposon insertions in plasmid-deficient Yptb, and screened a library having over 20,000 sequence-identified insertions. Among the previously uncharacterized loci, insertions in mrtAB, an operon encoding an ABC family transporter, had the most profound phenotype in a plasmid-deficient background. The absence of MrtAB, however, had no effect on growth in the liver and spleen of a wild type strain having an intact virulence plasmid, but caused a severe defect in colonization of the mesenteric lymph nodes. Although this result is consistent with lack of expression of the type III secretion system by Wt Yptb in the mesenteric lymph nodes, a reporter for YopE indicated that expression of the system was robust. We demonstrate that the ATPase activity of MrtB is required for growth in mice, indicating that transport activity is required for virulence. Indeed, MrtAB appears to function as an efflux pump, as the ATPase activity enhances resistance to ethidium bromide while increasing sensitivity to pyocyanin, consistent with export across the inner membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Linfonodos/microbiologia , Mesentério/microbiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Linfonodos/metabolismo , Linfonodos/patologia , Mesentério/metabolismo , Mesentério/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Virulência/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/patologia
4.
J Exp Med ; 203(6): 1591-601, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16754724

RESUMO

Dissemination of Yersinia pseudotuberculosis within mice after oral inoculation was analyzed. Y. pseudotuberculosis translocated to organs such as the liver and spleen shortly after oral inoculation, but was quickly cleared. In contrast, a second temporally distinct bacterial translocation event resulted in successful hepatosplenic replication of the bacteria. Replicating pools of bacteria could be established in these organs in mouse mutants that lacked Peyer's patches. These animals frequently had sterile mesenteric lymph nodes, a finding consistent with translocation taking place independently of regional lymph node colonization. In further contradiction to accepted models for dissemination of enteropathogens, clonal analysis revealed that bacteria causing disease in the spleen and liver of C57BL/6J mice were derived from populations located outside the intestinal lymph nodes. Replication of bacteria in the intestine before translocation appeared critical for dissemination, as transient selective suppression by streptomycin of bacterial growth in the intestine delayed dissemination of Y. pseudotuberculosis. These results collectively indicate that hepatosplenic colonization appears intimately connected with the ability of Y. pseudotuberculosis to successfully establish replication in the intestinal lumen and does not result from ordered spread leading from the intestine to regional lymph nodes before dissemination.


Assuntos
Intestinos/microbiologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Animais , Divisão Celular , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Fígado/microbiologia , Linfonodos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/microbiologia , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/isolamento & purificação
5.
PLoS Pathog ; 5(9): e1000573, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730693

RESUMO

All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8(+) T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8(+) T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated T(H)1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8(+) T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis-associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8(+) T cells are critical for hosts to overcome the anti-phagocytic action of Yops.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Vacinas Bacterianas/imunologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina G/metabolismo , Estimativa de Kaplan-Meier , Fígado/imunologia , Fígado/microbiologia , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Proteínas Citotóxicas Formadoras de Poros/imunologia , Estatísticas não Paramétricas , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas Atenuadas/imunologia , Yersinia pseudotuberculosis/patogenicidade
6.
PLoS One ; 12(2): e0172314, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207901

RESUMO

Prior studies indicated that CD8+ T cells responding to a surrogate single antigen expressed by Y. pseudotuberculosis, ovalbumin, were insufficient to protect against yersiniosis. Herein we tested the hypothesis that CD8+ T cells reactive to the natural Yersinia antigen YopE would be more effective at providing mucosal protection. We first confirmed that immunization with the attenuated ksgA- strain of Y. pseudotuberculosis generated YopE-specific CD8+ T cells. These T cells were protective against challenge with virulent Listeria monocytogenes expressing secreted YopE. Mice immunized with an attenuated L. monocytogenes YopE+ strain generated large numbers of functional YopE-specific CD8+ T cells, and initially controlled a systemic challenge with virulent Y. pseudotuberculosis, yet eventually succumbed to yersiniosis. Mice vaccinated with a YopE peptide and cholera toxin vaccine generated robust T cell responses, providing protection to 60% of the mice challenged mucosally but failed to show complete protection against systemic infection with virulent Y. pseudotuberculosis. These studies demonstrate that vaccination with recombinant YopE vaccines can generate YopE-specific CD8+ T cells, that can provide significant mucosal protection but these cells are insufficient to provide sterilizing immunity against systemic Y. pseudotuberculosis infection. Our studies have implications for Yersinia vaccine development studies.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Linfócitos T CD8-Positivos/imunologia , Mucosa/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/prevenção & controle , Yersinia pseudotuberculosis/imunologia , Administração Intranasal , Animais , Vacinas Bacterianas/administração & dosagem , Feminino , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/microbiologia
7.
Infect Genet Evol ; 43: 289-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27268148

RESUMO

CD8(+) T cells use contact-dependent cytolysis of target cells to protect the host against intracellular pathogens. We have previously shown that CD8(+) T cells and perforin are required to protect against the extracellular pathogen Yersinia pseudotuberculosis. Here we establish an experimental system where CD8(+) T cells specific to a single model antigen are the only memory response present at time of challenge. Using mice immunized with a vaccine strain of Listeria monocytogenes that expresses secreted ovalbumin (Lm-OVA), we show that OVA-specific CD8(+) T cells are generated and provide limited protection against challenge with virulent OVA(+)Y. pseudotuberculosis. Perforin expression by OVA-specific CD8(+) T cells was required, as Lm-OVA-immunized perforin-deficient mice showed higher bacterial burden as compared to Lm-OVA-immunized perforin-sufficient mice. Surprisingly, antigen-specific T cell protection waned over time, as Lm-OVA-immune mice eventually succumbed to Yersinia infection. Kinetic analysis of infection in mice with and without OVA-specific CD8(+) T cells revealed that bacterial numbers increased sharply in OVA-naïve mice until death, while OVA-immune mice held bacterial burden to a lower level throughout the duration of illness until death. Clonal analysis of bacterial populations in OVA-naïve and OVA-immune mice at distinct time points revealed equivalent and severe bottle-neck effects for bacteria in both sets of mice immediately after intravenous challenge, demonstrating a dominant role for other aspects of the immune system regardless of CD8(+) T cell status. These studies indicate that CD8(+) T cells against a single antigen can restrict Y. pseudotuberculosis colonization in a perforin-dependent manner, but ultimately are insufficient in their ability to provide sterilizing immunity and protect against death.


Assuntos
Vacinas Bacterianas/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/patogenicidade , Animais , Antígenos/administração & dosagem , Antígenos/genética , Antígenos/imunologia , Carga Bacteriana , Linfócitos T CD8-Positivos/microbiologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Expressão Gênica , Memória Imunológica , Listeria monocytogenes/química , Listeria monocytogenes/imunologia , Fígado/imunologia , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Ovalbumina/genética , Ovalbumina/imunologia , Proteínas Citotóxicas Formadoras de Poros/deficiência , Proteínas Citotóxicas Formadoras de Poros/genética , Análise de Sobrevida , Yersinia pseudotuberculosis/efeitos dos fármacos , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/mortalidade , Infecções por Yersinia pseudotuberculosis/prevenção & controle
8.
mBio ; 4(5): e00745-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24129258

RESUMO

UNLABELLED: Biofilms are thought to play an important role during colonization of the nasopharynx by Streptococcus pneumoniae, yet how they form in vivo and the determinants responsible remain unknown. Using scanning electron microscopy, we show that biofilm aggregates of increasing complexity form on murine nasal septa following intranasal inoculation. These biofilms were highly distinct from in vitro biofilms, as they were discontiguous and appeared to incorporate nonbacterial components such as intact host cells. Biofilms initially formed on the surface of ciliated epithelial cells and, as cells were sloughed off, were found on the basement membrane. The size and number of biofilm aggregates within nasal lavage fluid were digitally quantitated and revealed strain-specific capabilities that loosely correlated with the ability to form robust in vitro biofilms. We tested the ability of isogenic mutants deficient in CbpA, pneumolysin, hydrogen peroxide, LytA, LuxS, CiaR/H, and PsrP to form biofilms within the nasopharynx. This analysis revealed that CiaR/H was absolutely required for colonization, that PsrP and SpxB strongly impacted aggregate formation, and that other determinants affected aggregate morphology in a modest fashion. We determined that mice colonized with ΔpsrP mutants had greater levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-1ß, and KC in nasal lavage fluid than did mice colonized with wild-type controls. This phenotype correlated with a diminished capacity of biofilm pneumococci to invade host cells in vitro despite enhanced attachment. Our results show that biofilms form during colonization and suggest that they may contribute to persistence through a hyperadhesive, noninvasive state that elicits a dampened cytokine response. IMPORTANCE: This work demonstrates the first temporal characterization of Streptococcus pneumoniae biofilm formation in vivo. Our results show that the morphology of biofilms formed by both invasive and noninvasive clinical isolates in vivo is distinct from that of formed biofilms in vitro, yet propensity to form biofilms in vivo loosely correlates with the degree of in vitro biofilm formation on a microtiter plate. We show that host components, including intact host cells, influence the formation of in vivo structures. We also found that efficient biofilm formation in vivo requires multiple bacterial determinants. While some factors are essential for in vivo biofilm formation (CiaRH, PsrP, and SpxB), other factors are less critical (CbpA, LytA, LuxS, and pneumolysin). In comparison to their planktonic counterparts, biofilm pneumococci are hyperadhesive but less invasive and elicit a weaker proinflammatory cytokine response. These findings give insight into the requirements for and potential role of biofilms during prolonged asymptomatic colonization.


Assuntos
Biofilmes , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/fisiologia , Streptococcus pneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/imunologia , Nasofaringe/microbiologia , Infecções Pneumocócicas/microbiologia , Especificidade da Espécie , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Virulência
9.
J Immunol ; 177(6): 3983-93, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16951361

RESUMO

During infection, Salmonella transitions from an extracellular-phase (STEX, growth outside host cells) to an intracellular-phase (STIN, growth inside host cells): changes in gene expression mediate survival in the phagosome and modifies LPS and outer membrane protein expression, including altered production of FliC, an Ag recognized by immune CD4+ T cells. Previously, we demonstrated that systemic STIN bacteria repress FliC below the activation threshold of FliC-specific T cells. In this study, we tested the hypothesis that changes in FliC compartmentalization and bacterial responses triggered during the transition from STEX to STIN combine to reduce the ability of APCs to present FliC to CD4+ T cells. Approximately 50% of the Salmonella-specific CD4+ T cells from Salmonella-immune mice were FliC specific and produced IFN-gamma, demonstrating the potent immunogenicity of FliC. FliC expressed by STEX bacteria was efficiently presented by splenic APCs to FliC-specific CD4+ T cells in vitro. However, STIN bacteria, except when lysed, expressed FliC within a protected intracellular compartment and evaded stimulation of FliC-specific T cells. The combination of STIN-mediated responses that reduced FliC bioavailability were overcome by dendritic cells (DCs), which presented intracellular FliC within heat-killed bacteria; however, this ability was abrogated by live bacterial infection. Furthermore, STIN bacteria, unlike STEX, limited DC activation as measured by increased MHC class II, CD86, TNF-alpha, and IL-12 expression. These data indicate that STIN bacteria restrict FliC bioavailability by Ag compartmentalization, and together with STIN bacterial responses, limit DC maturation and cytokine production. Together, these mechanisms may restrain DC-mediated activation of FliC-specific CD4+ T cells.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Flagelina/metabolismo , Salmonella typhimurium/imunologia , Animais , Linfócitos T CD4-Positivos/microbiologia , Linhagem Celular , Células Clonais , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Feminino , Flagelina/imunologia , Terapia de Imunossupressão , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C3H
10.
Infect Immun ; 73(11): 7226-35, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16239517

RESUMO

The flagellar filament protein FliC is a natural antigen recognized by memory CD4+ T cells recovered from Salmonella enterica serovar Typhimurium-infected humans and mice. To further investigate T-cell responses to FliC, we derived FliC-specific CD4+-T-cell clones from mice of two different haplotypes following oral S. enterica serovar Typhimurium infection. Using C-terminal truncations of MalE-FliC recombinant fusion proteins, we mapped antigenic activity to four different regions of FliC; three of the four epitope-containing regions were present in both FliC and the alternate flagellin subunit FljB. We determined that two novel FliC epitopes were also present in flagellins from several gram-negative enteric bacterial species: E(k)-restricted FliC 80-94 (amino acids 80 to 94) and A(b)-restricted FliC 455-469. Further mapping confirmed the presence of two previously identified FliC epitopes: A(k)-restricted FliC 339-350 and A(b)-restricted FliC 428-442. Therefore, like the recognition site of the innate immune receptor Toll-like receptor 5, three of four FliC epitopes recognized by CD4+ T cells colocalize in the D0/D1 domains of FliC. Salmonella-infected macrophages and dendritic cells stimulated epitope-specific CD4+-T-cell proliferation; infected dendritic cells also activated T cells to produce gamma interferon. These data demonstrate that Salmonella infection generates murine CD4+-T-cell responses to multiple epitopes in the natural antigen FliC and that recognition of infected phagocytes by FliC-specific CD4+ T cells triggers effector functions known to be essential for protective immunity. Together, these data suggest that FliC-specific CD4+ T cells may contribute to cell-mediated host defenses against Salmonella.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Epitopos/química , Epitopos/imunologia , Flagelina/química , Flagelina/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Sequência de Aminoácidos , Animais , Feminino , Flagelina/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Fagócitos/imunologia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
11.
Infect Immun ; 73(3): 1350-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15731032

RESUMO

A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysaccharide (LPS). PhoP/PhoQ, a regulon controlling Salmonella virulence and remodeling of LPS to resist innate immunity, coordinately represses production of surface-exposed antigens recognized by CD4+ T cells and TLRs. These data suggest that genetically coordinated surface modifications may provide a growth advantage for Salmonella in host tissues by limiting both innate and adaptive immune recognition.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Glicoproteínas de Membrana/imunologia , Receptores de Superfície Celular/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Feminino , Flagelos/imunologia , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligantes , Ativação Linfocitária , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Organelas/imunologia , Organelas/metabolismo , Receptores de Superfície Celular/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Receptores Toll-Like , Virulência
12.
Nat Immunol ; 4(12): 1247-53, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14625549

RESUMO

Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and activates host inflammatory responses. In this study, we examine the nature of the TLR5-flagellin interaction. With deletional, insertional and alanine-scanning mutagenesis, we precisely mapped the TLR5 recognition site on flagellin to a cluster of 13 amino acid residues that participate in intermolecular interactions within flagellar protofilaments and that are required for bacterial motility. The recognition site is buried in the flagellar filament, and monomeric flagellin, but not the filamentous molecule, stimulated TLR5. Finally, flagellin coprecipitated with TLR5, indicating close physical interaction between the molecules. These studies demonstrate the exquisite ability of the innate immune system to precisely target a conserved site on flagellin that is essential for bacterial motility.


Assuntos
Flagelina/metabolismo , Glicoproteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Alanina , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Flagelos/química , Flagelos/fisiologia , Flagelos/ultraestrutura , Flagelina/química , Flagelina/genética , Flagelina/ultraestrutura , Humanos , Glicoproteínas de Membrana/química , Camundongos , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação Puntual , Reação em Cadeia da Polimerase , Estrutura Quaternária de Proteína , Receptores de Superfície Celular/química , Receptor 5 Toll-Like , Receptores Toll-Like
13.
J Immunol ; 172(10): 6202-8, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15128808

RESUMO

Mammalian cells recognize LPS from Gram-negative bacteria via the Toll-like receptor 4 (TLR4) complex. During experimental Salmonella infection, C3H/HeJ mice carrying a dominant-negative mutation in TLR4 exhibited delayed chemokine production, impaired NO generation, and attenuated cellular immune responses. However, dramatically enhanced bacterial growth within the Kupffer cell network before the recruitment of inflammatory cells appeared to be primarily responsible for the early demise of Salmonella-infected TLR4-deficient mice. LPS-TLR4 signaling plays an essential role in the generation of both innate and adaptive immune responses throughout the course of infection with Gram-negative bacteria. Alternative pattern-recognition receptors cannot completely compensate for the loss of TLR4, and compensation occurs at the expense of an increased microbial burden.


Assuntos
Células de Kupffer/imunologia , Células de Kupffer/patologia , Glicoproteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Salmonelose Animal/imunologia , Salmonelose Animal/patologia , Animais , Proteínas de Bactérias/genética , Quimiocinas CXC/biossíntese , Citotoxicidade Imunológica/genética , Predisposição Genética para Doença , Imunidade Inata/genética , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C3H , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Fagocitose/genética , Fagocitose/imunologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Salmonelose Animal/genética , Salmonella enterica/genética , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA