Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 617(7961): 574-580, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996871

RESUMO

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Assuntos
Infecções por Adenovirus Humanos , Coinfecção , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/virologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/genética , Dependovirus/isolamento & purificação , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/virologia , Hepatite/epidemiologia , Hepatite/virologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 6/isolamento & purificação , Enterovirus Humano A/isolamento & purificação , Vírus Auxiliares/isolamento & purificação
2.
Genome Res ; 27(5): 722-736, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28298431

RESUMO

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Animais , Mapeamento de Sequências Contíguas/normas , Drosophila melanogaster/genética , Genoma Bacteriano , Genômica/normas , Humanos , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/normas
3.
Proc Natl Acad Sci U S A ; 113(15): E2114-23, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035980

RESUMO

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Assuntos
Anopheles/genética , Cromossomos de Insetos/genética , Insetos Vetores/genética , Cromossomo Y/genética , Animais , Feminino , Malária , Masculino , Filogenia , Análise de Sequência de DNA , Cromossomo X/genética
6.
BMC Genomics ; 14: 450, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23829427

RESUMO

BACKGROUND: The genetic network involved in the bacterial cell cycle is poorly understood even though it underpins the remarkable ability of bacteria to proliferate. How such network evolves is even less clear. The major aims of this work were to identify and examine the genes and pathways that are differentially expressed during the Caulobacter crescentus cell cycle, and to analyze the evolutionary features of the cell cycle network. RESULTS: We used deep RNA sequencing to obtain high coverage RNA-Seq data of five C. crescentus cell cycle stages, each with three biological replicates. We found that 1,586 genes (over a third of the genome) display significant differential expression between stages. This gene list, which contains many genes previously unknown for their cell cycle regulation, includes almost half of the genes involved in primary metabolism, suggesting that these "house-keeping" genes are not constitutively transcribed during the cell cycle, as often assumed. Gene and module co-expression clustering reveal co-regulated pathways and suggest functionally coupled genes. In addition, an evolutionary analysis of the cell cycle network shows a high correlation between co-expression and co-evolution. Most co-expression modules have strong phylogenetic signals, with broadly conserved genes and clade-specific genes predominating different substructures of the cell cycle co-expression network. We also found that conserved genes tend to determine the expression profile of their module. CONCLUSION: We describe the first phylogenetic and single-nucleotide-resolution transcriptomic analysis of a bacterial cell cycle network. In addition, the study suggests how evolution has shaped this network and provides direct biological network support that selective pressure is not on individual genes but rather on the relationship between genes, which highlights the importance of integrating phylogenetic analysis into biological network studies.


Assuntos
Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Transcriptoma , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Ciclo Celular , Mapeamento Cromossômico , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genes Bacterianos , Genes Essenciais , Redes e Vias Metabólicas/genética , Família Multigênica , Filogenia , RNA Bacteriano/genética , Análise de Sequência de RNA
7.
Emerg Infect Dis ; 18(8): 1307-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22840345

RESUMO

In December 2009, two unusual cases of anthrax were diagnosed in heroin users in Scotland. A subsequent anthrax outbreak in heroin users emerged throughout Scotland and expanded into England and Germany, sparking concern of nefarious introduction of anthrax spores into the heroin supply. To better understand the outbreak origin, we used established genetic signatures that provided insights about strain origin. Next, we sequenced the whole genome of a representative Bacillus anthracis strain from a heroin user (Ba4599), developed Ba4599-specific single-nucleotide polymorphism assays, and genotyped all available material from other heroin users with anthrax. Of 34 case-patients with B. anthracis-positive PCR results, all shared the Ba4599 single-nucleotide polymorphism genotype. Phylogeographic analysis demonstrated that Ba4599 was closely related to strains from Turkey and not to previously identified isolates from Scotland or Afghanistan, the presumed origin of the heroin. Our results suggest accidental contamination along the drug trafficking route through a cutting agent or animal hides used to smuggle heroin into Europe.


Assuntos
Antraz/epidemiologia , Bacillus anthracis/genética , Surtos de Doenças , Heroína , Epidemiologia Molecular , Abuso de Substâncias por Via Intravenosa , Antraz/diagnóstico , Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/análise , DNA Bacteriano/genética , Europa (Continente)/epidemiologia , Feminino , Genoma Bacteriano , Genótipo , Humanos , Masculino , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/epidemiologia
8.
BMC Bioinformatics ; 12: 385, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21961884

RESUMO

BACKGROUND: A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. RESULTS: Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. CONCLUSIONS: Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.


Assuntos
Internet , Metagenômica/métodos , Software , Biologia Computacional , Trato Gastrointestinal/microbiologia , Humanos
9.
BMC Genomics ; 12: 32, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21232151

RESUMO

BACKGROUND: The dual concepts of pan and core genomes have been widely adopted as means to assess the distribution of gene families within microbial species and genera. The core genome is the set of genes shared by a group of organisms; the pan genome is the set of all genes seen in any of these organisms. A variety of methods have provided drastically different estimates of the sizes of pan and core genomes from sequenced representatives of the same groups of bacteria. RESULTS: We use a combination of mathematical, statistical and computational methods to show that current predictions of pan and core genome sizes may have no correspondence to true values. Pan and core genome size estimates are problematic because they depend on the estimation of the occurrence of rare genes and genomes, respectively, which are difficult to estimate precisely because they are rare. Instead, we introduce and evaluate a robust metric - genomic fluidity - to categorize the gene-level similarity among groups of sequenced isolates. Genomic fluidity is a measure of the dissimilarity of genomes evaluated at the gene level. CONCLUSIONS: The genomic fluidity of a population can be estimated accurately given a small number of sequenced genomes. Further, the genomic fluidity of groups of organisms can be compared robustly despite variation in algorithms used to identify genes and their homologs. As such, we recommend that genomic fluidity be used in place of pan and core genome size estimates when assessing gene diversity within genomes of a species or a group of closely related organisms.


Assuntos
Variação Genética/genética , Genoma Bacteriano/genética , Simulação por Computador , Modelos Estatísticos , Modelos Teóricos
10.
RNA ; 15(12): 2129-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19946040

RESUMO

The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg(2+)] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.


Assuntos
Ligases/química , Ligases/metabolismo , Magnésio/química , Magnésio/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Catalítico/química , RNA Catalítico/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Variação Genética , Cinética , Ligases/genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Catalítico/genética , Análise de Sequência de DNA
11.
Bioinformatics ; 26(15): 1901-2, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20562417

RESUMO

SUMMARY: Bisulfite sequencing allows cytosine methylation, an important epigenetic marker, to be detected via nucleotide substitutions. Since the Applied Biosystems SOLiD System uses a unique di-base encoding that increases confidence in the detection of nucleotide substitutions, it is a potentially advantageous platform for this application. However, the di-base encoding also makes reads with many nucleotide substitutions difficult to align to a reference sequence with existing tools, preventing the platform's potential utility for bisulfite sequencing from being realized. Here, we present SOCS-B, a reference-based, un-gapped alignment algorithm for the SOLiD System that is tolerant of both bisulfite-induced nucleotide substitutions and a parametric number of sequencing errors, facilitating bisulfite sequencing on this platform. An implementation of the algorithm has been integrated with the previously reported SOCS alignment tool, and was used to align CpG methylation-enriched Arabidopsis thaliana bisulfite sequence data, exhibiting a 2-fold increase in sensitivity compared to existing methods for aligning SOLiD bisulfite data. AVAILABILITY: Executables, source code, and sample data are available at http://solidsoftwaretools.com/gf/project/socs/


Assuntos
Algoritmos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Sulfitos , Arabidopsis/genética , Alinhamento de Sequência/instrumentação , Análise de Sequência de DNA/instrumentação
12.
Proc Natl Acad Sci U S A ; 105(44): 17133-8, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18955706

RESUMO

Petrobactin, a virulence-associated siderophore produced by Bacillus anthracis, chelates ferric iron through the rare 3,4-isomer of dihydroxybenzoic acid (3,4-DHBA). Most catechol siderophores, including bacillibactin and enterobactin, use 2,3-DHBA as a biosynthetic subunit. Significantly, siderocalin, a factor involved in human innate immunity, sequesters ferric siderophores bearing the more typical 2,3-DHBA moiety, thereby impeding uptake of iron by the pathogenic bacterial cell. In contrast, the unusual 3,4-DHBA component of petrobactin renders the siderocalin system incapable of obstructing bacterial iron uptake. Although recent genetic and biochemical studies have revealed selected early steps in petrobactin biosynthesis, the origin of 3,4-DHBA as well as the function of the protein encoded by the final gene in the B. anthracis siderophore biosynthetic (asb) operon, asbF (BA1986), has remained unclear. In this study we demonstrate that 3,4-DHBA is produced through conversion of the common bacterial metabolite 3-dehydroshikimate (3-DHS) by AsbF-a 3-DHS dehydratase. Elucidation of the cocrystal structure of AsbF with 3,4-DHBA, in conjunction with a series of biochemical studies, supports a mechanism in which an enolate intermediate is formed through the action of this 3-DHS dehydratase metalloenzyme. Structural and functional parallels are evident between AsbF and other enzymes within the xylose isomerase TIM-barrel family. Overall, these data indicate that microbial species shown to possess homologs of AsbF may, like B. anthracis, also rely on production of the unique 3,4-DHBA metabolite to achieve full viability in the environment or virulence within the host.


Assuntos
Proteínas de Bactérias/química , Benzamidas/metabolismo , Hidroliases/química , Hidroxibenzoatos/metabolismo , Animais , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Hidroliases/genética , Hidroliases/metabolismo , Concentração de Íons de Hidrogênio , Hidroxibenzoatos/química , Camundongos , Modelos Moleculares , Óperon , Conformação Proteica , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Relação Estrutura-Atividade
13.
bioRxiv ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32511415

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (SHERLOCK and HUDSON Integration to Navigate Epidemics), a sensitive and specific integrated diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We combine the steps of SHERLOCK into a single-step reaction and optimize HUDSON to accelerate viral inactivation in nasopharyngeal swabs and saliva. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-PCR with a sample-to-answer time of 50 minutes. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.

14.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896628

RESUMO

Bacillus anthracis is the causative agent of anthrax, a disease of livestock, wildlife, and humans. Here, we present the draft genome sequences of five historical B. anthracis strains that were preserved as lyophilates in glass vials for decades.

15.
Nat Commun ; 11(1): 5921, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219225

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (Streamlined Highlighting of Infections to Navigate Epidemics), a sensitive and specific diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We identify the optimal conditions to allow RPA-based amplification and Cas13-based detection to occur in a single step, simplifying assay preparation and reducing run-time. We improve HUDSON to rapidly inactivate viruses in nasopharyngeal swabs and saliva in 10 min. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-qPCR with a sample-to-answer time of 50 min. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.


Assuntos
Betacoronavirus/isolamento & purificação , Proteínas Associadas a CRISPR/metabolismo , Técnicas de Diagnóstico Molecular/métodos , Bioensaio , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Fluorescência , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2
16.
J Bacteriol ; 191(10): 3203-11, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304856

RESUMO

Although gene expression has been studied in bacteria for decades, many aspects of the bacterial transcriptome remain poorly understood. Transcript structure, operon linkages, and information on absolute abundance all provide valuable insights into gene function and regulation, but none has ever been determined on a genome-wide scale for any bacterium. Indeed, these aspects of the prokaryotic transcriptome have been explored on a large scale in only a few instances, and consequently little is known about the absolute composition of the mRNA population within a bacterial cell. Here we report the use of a high-throughput sequencing-based approach in assembling the first comprehensive, single-nucleotide resolution view of a bacterial transcriptome. We sampled the Bacillus anthracis transcriptome under a variety of growth conditions and showed that the data provide an accurate and high-resolution map of transcript start sites and operon structure throughout the genome. Further, the sequence data identified previously nonannotated regions with significant transcriptional activity and enhanced the accuracy of existing genome annotations. Finally, our data provide estimates of absolute transcript abundance and suggest that there is significant transcriptional heterogeneity within a clonal, synchronized bacterial population. Overall, our results offer an unprecedented view of gene expression and regulation in a bacterial cell.


Assuntos
Bacillus anthracis/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Óperon/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
17.
Bioinformatics ; 24(23): 2776-7, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18842598

RESUMO

UNLABELLED: Here, we report the development of SOCS (short oligonucleotide color space), a program designed for efficient and flexible mapping of Applied Biosystems SOLiD sequence data onto a reference genome. SOCS performs its mapping within the context of 'color space', and it maximizes usable data by allowing a user-specified number of mismatches. Sequence census functions facilitate a variety of functional genomics applications, including transcriptome mapping and profiling, as well as ChIP-Seq. AVAILABILITY: Executables, source code, and sample data are available at http://socs.biology.gatech.edu/


Assuntos
Genoma , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bases de Dados Genéticas , Análise de Sequência de DNA
18.
Genes (Basel) ; 9(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494531

RESUMO

High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens.

19.
Gigascience ; 7(3): 1-13, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329394

RESUMO

Background: The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. Results: The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. Conclusions: The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.


Assuntos
Aedes/virologia , Replicação Viral/genética , Infecção por Zika virus/genética , Zika virus/genética , Aedes/genética , Animais , Sequência de Bases/genética , Linhagem Celular , Genoma de Inseto/genética , Humanos , Larva/genética , Larva/virologia , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/virologia
20.
Microbiome ; 6(1): 197, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30396371

RESUMO

The Mid-Atlantic Microbiome Meet-up (M3) organization brings together academic, government, and industry groups to share ideas and develop best practices for microbiome research. In January of 2018, M3 held its fourth meeting, which focused on recent advances in biodefense, specifically those relating to infectious disease, and the use of metagenomic methods for pathogen detection. Presentations highlighted the utility of next-generation sequencing technologies for identifying and tracking microbial community members across space and time. However, they also stressed the current limitations of genomic approaches for biodefense, including insufficient sensitivity to detect low-abundance pathogens and the inability to quantify viable organisms. Participants discussed ways in which the community can improve software usability and shared new computational tools for metagenomic processing, assembly, annotation, and visualization. Looking to the future, they identified the need for better bioinformatics toolkits for longitudinal analyses, improved sample processing approaches for characterizing viruses and fungi, and more consistent maintenance of database resources. Finally, they addressed the necessity of improving data standards to incentivize data sharing. Here, we summarize the presentations and discussions from the meeting, identifying the areas where microbiome analyses have improved our ability to detect and manage biological threats and infectious disease, as well as gaps of knowledge in the field that require future funding and focus.


Assuntos
Armas Biológicas , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Humanos , Microbiota/fisiologia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA