Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cell ; 146(6): 904-17, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21889194

RESUMO

MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/química , Azepinas/química , Azepinas/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/genética , Ativação Transcricional/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia
2.
Blood ; 142(22): 1871-1878, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37494698

RESUMO

Most patients with solitary bone plasmacytomas (SBP) progress to multiple myeloma (MM) after definitive radiation therapy as their primary treatment. Whether the presence of high-risk (HR) cytogenetic abnormalities by fluorescence in situ hybridization (FISH) in the clonal plasma cells, obtained either directly from the diagnostic SBP tissue or the corresponding bone marrow examination at the time of diagnosis, is associated with a shorter time to progression (TTP) to MM is unknown. This study evaluated all patients diagnosed with SBP at the Mayo Clinic from January 2012 to July 2022. The presence of del(17p), t(14;16), t(4;14), or +1q (gain or amplification) by FISH in clonal plasma cells was defined as HR. A total of 114 patients were included in this cohort, and baseline FISH was available for 55 patients (48%), of which 22 were classified as HR (40%). The median TTP to MM for patients with SBP and HR FISH was 8 months (95% confidence interval [CI], 6.3-26) compared with 42 months (95% CI, 25-not reached [NR]) in patients with SBP without HR FISH (P < .001). In a multivariate analysis, only HR FISH was a significant predictor for shorter TTP to MM, independent of minimal marrow involvement and an abnormal serum free light chain ratio at diagnosis. Deletion (17p) and gain 1q abnormalities were the most common FISH abnormalities responsible for the short TTP to MM. Thus, assessing for HR FISH abnormalities in clonal plasma cells derived from either the diagnostic SBP tissue or the staging bone marrow examination of patients with newly diagnosed SBP is feasible and prognostic for a shorter TTP to MM.


Assuntos
Mieloma Múltiplo , Plasmocitoma , Humanos , Plasmocitoma/genética , Hibridização in Situ Fluorescente , Aberrações Cromossômicas , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Prognóstico , Progressão da Doença
3.
Blood ; 139(26): 3708-3721, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35090171

RESUMO

Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses, which led to a recent US Food and Drug Administration approval. Despite the success of this therapy, durable remissions continue to be low, and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models, we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7, which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition, CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.


Assuntos
Fibroblastos Associados a Câncer , Mieloma Múltiplo , Medula Óssea , Fibroblastos Associados a Câncer/patologia , Terapia Baseada em Transplante de Células e Tecidos , Fibroblastos , Humanos , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/patologia , Microambiente Tumoral
4.
Blood ; 140(21): 2193-2227, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001803

RESUMO

With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.


Assuntos
Linfoma , Neoplasias , Humanos , Linfoma/diagnóstico , Linfoma/genética , Linfoma/terapia , Genômica/métodos , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Tomada de Decisão Clínica
5.
Blood ; 137(1): 61-74, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640012

RESUMO

NRAS Q61 mutations are prevalent in advanced/relapsed multiple myeloma (MM) and correlate with poor patient outcomes. Thus, we generated a novel MM model by conditionally activating expression of endogenous NrasQ61R and an MYC transgene in germinal center (GC) B cells (VQ mice). VQ mice developed a highly malignant MM characterized by a high proliferation index, hyperactivation of extracellular signal-regulated kinase and AKT signaling, impaired hematopoiesis, widespread extramedullary disease, bone lesions, kidney abnormalities, preserved programmed cell death protein 1 and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain immune-checkpoint pathways, and expression of human high-risk MM gene signatures. VQ MM mice recapitulate most of the biological and clinical features of human advanced/high-risk MM. These MM phenotypes are serially transplantable in syngeneic recipients. Two MM cell lines were also derived to facilitate future genetic manipulations. Combination therapies based on MEK inhibition significantly prolonged the survival of VQ mice with advanced-stage MM. Our study provides a strong rationale to develop MEK inhibition-based therapies for treating advanced/relapsed MM.


Assuntos
Linfócitos B/patologia , Modelos Animais de Doenças , Proteínas Monoméricas de Ligação ao GTP/genética , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Centro Germinativo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/patologia , Transgenes
7.
Nat Immunol ; 9(12): 1364-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18997792

RESUMO

The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-kappaB (NF-kappaB) signaling in resting cells by targeting NF-kappaB-inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-kappaB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-kappaB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-kappaB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.


Assuntos
Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Ubiquitinação/imunologia , Animais , Linfócitos B/imunologia , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Proteínas Inibidoras de Apoptose/imunologia , Proteínas Inibidoras de Apoptose/metabolismo , Sequências Repetidas Invertidas , Camundongos , Camundongos Mutantes , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Quinase Induzida por NF-kappaB
8.
Haematologica ; 105(6): 1641-1649, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31582538

RESUMO

The cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against multiple myeloma was initially identified in an unbiased in vitro chemical library screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the tested cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcription factor EB, a master regulator of lysosomal biogenesis and autophagy. Furthermore, we established an assay measuring autophagy as a predictive marker of APY0201 sensitivity. Overall, these findings indicate promising activity of PIKfyve inhibitors secondary to disruption of autophagy in multiple myeloma and suggest a strategy to enrich for likely responders.


Assuntos
Mieloma Múltiplo , Autofagia , Humanos , Lisossomos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase
9.
EMBO J ; 34(9): 1214-30, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25770584

RESUMO

Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che-1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress-induced autophagy. Strikingly, Che-1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Mieloma Múltiplo/patologia , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Nus , Mieloma Múltiplo/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Repressoras/genética , Estresse Fisiológico , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Blood ; 129(8): 991-1007, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28028022

RESUMO

Lenalidomide is an immunomodulatory drug (IMiDs) with clinical efficacy in multiple myeloma (MM) and other late B-cell neoplasms. Although cereblon (CRBN) is an essential requirement for IMiD action, the complete molecular and biochemical mechanisms responsible for lenalidomide-mediated sensitivity or resistance remain unknown. Here, we report that IMiDs work primarily via inhibition of peroxidase-mediated intracellular H2O2 decomposition in MM cells. MM cells with lower H2O2-decomposition capacity were more vulnerable to lenalidomide-induced H2O2 accumulation and associated cytotoxicity. CRBN-dependent degradation of IKZF1 and IKZF3 was a consequence of H2O2-mediated oxidative stress. Lenalidomide increased intracellular H2O2 levels by inhibiting thioredoxin reductase (TrxR) in cells expressing CRBN, causing accumulation of immunoglobulin light-chain dimers, significantly increasing endoplasmic reticulum stress and inducing cytotoxicity by activation of BH3-only protein Bim in MM. Other direct inhibitors of TrxR and thioredoxin (Trx) caused similar cytotoxicity, but in a CRBN-independent fashion. Our findings could help identify patients most likely to benefit from IMiDs and suggest direct TrxR or Trx inhibitors for MM therapy.


Assuntos
Peróxido de Hidrogênio/metabolismo , Fatores Imunológicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Talidomida/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Fator de Transcrição Ikaros/metabolismo , Lenalidomida , Peptídeo Hidrolases/metabolismo , Peroxidase/metabolismo , Proteólise/efeitos dos fármacos , Talidomida/farmacologia , Ubiquitina-Proteína Ligases
11.
Blood ; 130(10): 1198-1204, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684537

RESUMO

This phase 1/2 trial evaluated the maximum tolerated doses, safety, and efficacy of pomalidomide, bortezomib, and dexamethasone (PVD) combination in patients with relapsed lenalidomide-refractory multiple myeloma (MM). In phase 1, dose level 1 consisted of pomalidomide (4 mg by mouth on days 1 to 21), IV or subcutaneous bortezomib (1.0 mg/m2 on days 1, 8, 15, and 22), and dexamethasone (40 mg by mouth on days 1, 8, 15, and 22) given every 28 days. Bortezomib was increased to 1.3 mg/m2 for dose level 2 and adopted in the phase 2 expansion cohort. We describe the results of 50 patients. Objective response rate was 86% (95% confidence interval [CI], 73-94) among all evaluable patients (stringent complete response, 12%; complete response, 10%; very good partial response, 28%; and partial response, 36%) and 100% among high-risk patients. Within a median follow-up of 42 months, 20% remain progression free, 66% are alive, and 4% remain on treatment. Median progression-free survival was 13.7 months (95% CI, 9.6-17.7). The most common toxicities were neutropenia (96%), leukopenia (84%), thrombocytopenia (82%), anemia (74%), and fatigue (72%); however, the majority of these were grade 1 or 2. The most common grade ≥3 toxicities included neutropenia (70%), leukopenia (36%), and lymphopenia (20%). Deep vein thrombosis occurred in 5 patients. In conclusion, PVD is a highly effective combination in lenalidomide-refractory MM patients. Weekly administration of bortezomib enhanced tolerability and convenience. Toxicities are manageable, mostly consisting of mild cytopenias with no significant neuropathy. This trial was registered at www.clinicaltrials.gov as #NCT01212952.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dexametasona/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Lenalidomida , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Talidomida/uso terapêutico , Resultado do Tratamento
12.
Blood ; 128(9): 1226-33, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458004

RESUMO

In this study, targeted sequencing to screen 50 multidrug refractory multiple myeloma (rMM) patients was performed by using the Multiple Myeloma Mutation Panel. Patients were pretreated with both immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs), and 88%, 78%, and 68% were refractory to an IMiD, a PI, or both, respectively. The majority of patients had progressive (82%) or refractory (78%) disease immediately before sampling, with 43% being IMiD refractory and 46% being PI refractory in the most recent line of therapy. Compared with newly diagnosed MM, an increased prevalence of mutations in the Ras pathway genes KRAS, NRAS, and/or BRAF (72%), as well as TP53 (26%), CRBN (12%), and CRBN pathway genes (10%) was observed. Longitudinal analyses performed in 3 patients with CRBN mutations at time of IMiD resistance confirmed that these mutations were undetectable at earlier, IMiD-sensitive time points. Furthermore, the functional introduction of these mutations in MM cells conferred lenalidomide resistance in vitro. These data indicate a differential genetic landscape in rMM associated with drug response.


Assuntos
GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Mieloma Múltiplo/genética , Mutação , Peptídeo Hidrolases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases
13.
Blood ; 128(20): 2415-2422, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27702799

RESUMO

Proteasome inhibitors have become an integral part of myeloma therapy. Considerable efforts have gone into optimizing this therapeutic approach to obtain maximal proteasome inhibition with least toxicity. Ixazomib is the first oral proteasome inhibitor to enter the clinic and has been studied as a single agent as well as in various combinations. The current trial was designed to examine the efficacy and toxicity of combining 2 different doses of ixazomib (4 mg and 5.5 mg given weekly for 3 of 4 weeks) with 40 mg weekly of dexamethasone, in relapsed myeloma. Seventy patients were enrolled, 35 patients randomly assigned to each ixazomib dose. Overall, 30 (43%; 95% confidence interval, 31-55) of the patients achieved a confirmed partial response or better, with 31% achieving a response with 4 mg and 54% with 5.5 mg of ixazomib. The median event-free survival (EFS) for the entire study population was 8.4 months; 1-year overall survival was 96%. The EFS was 5.7 months for patients with prior bortezomib exposure and 11.0 months for bortezomib-naïve patients. A grade 3 or 4 adverse event considered at least possibly related to treatment was seen in 11 (32%) patients at 4 mg and in 21 (60%) at 5.5 mg. Dose reductions were more frequent with 5.5 mg dose. Overall, the ixazomib with dexamethasone has good efficacy in relapsed myeloma, is well-tolerated and with higher response rate at 5.5 mg, albeit with more toxicity. This study was registered at www.clinicaltrials.gov as #NCT01415882.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos de Boro/administração & dosagem , Bortezomib/uso terapêutico , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicina/análogos & derivados , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Compostos de Boro/efeitos adversos , Dexametasona/efeitos adversos , Feminino , Glicina/administração & dosagem , Glicina/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Análise de Sobrevida , Resultado do Tratamento
14.
Ann Hematol ; 97(8): 1453-1462, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29623394

RESUMO

The International Myeloma Working Group has proposed the Revised International Staging System (R-ISS) for risk stratification of multiple myeloma (MM) patients. There are a limited number of studies that have validated this risk model in the autologous stem cell transplant (ASCT) setting. In this retrospective study, we evaluated the applicability and value for predicting survival of the R-ISS model in 134 MM patients treated with new agents and ASCT at the Mayo Clinic in Arizona and the University Hospital of Salamanca in Spain. The patients were reclassified at diagnosis according to the R-ISS: 44 patients (33%) had stage I, 75 (56%) had stage II, and 15 (11%) had stage III. After a median follow-up of 60 months, R-ISS assessed at diagnosis was an independent predictor for overall survival (OS) after ASCT, with median OS not reached, 111 and 37 months for R-ISS I, II and III, respectively (P < 0.001). We also found that patients belonging to R-ISS II and having high-risk chromosomal abnormalities (CA) had a significant shorter median OS than those with R-ISS II without CA: 70 vs. 111 months, respectively. Therefore, this study lends further support for the R-ISS as a reliable prognostic tool for estimating survival in transplant myeloma patients and suggests the importance of high-risk CA in the R-ISS II group.


Assuntos
Mieloma Múltiplo/diagnóstico , Estadiamento de Neoplasias/métodos , Adulto , Idoso , Biomarcadores , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Quimioterapia de Indução , Quimioterapia de Manutenção , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Transplante Autólogo , Resultado do Tratamento
15.
Nature ; 470(7332): 124-8, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293379

RESUMO

p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser 102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.


Assuntos
Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Repressoras/química , Transativadores/química , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
16.
Nature ; 471(7339): 467-72, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21430775

RESUMO

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.


Assuntos
Genoma Humano/genética , Mieloma Múltiplo/genética , Mutação/genética , Sequência de Aminoácidos , Coagulação Sanguínea/genética , Ilhas de CpG/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Éxons/genética , Complexo Multienzimático de Ribonucleases do Exossomo , Genômica , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Homeostase/genética , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Oncogenes/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Conformação Proteica , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Processamento Pós-Transcricional do RNA/genética , Ribonucleases/química , Ribonucleases/genética , Transdução de Sinais/genética , Transcrição Gênica/genética
17.
Proc Natl Acad Sci U S A ; 111(21): 7729-34, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821809

RESUMO

We used the I-SceI endonuclease to produce DNA double-strand breaks (DSBs) and observed that a fraction of these DSBs were repaired by insertion of sequences, which we termed "templated sequence insertions" (TSIs), derived from distant regions of the genome. These TSIs were derived from genic, retrotransposon, or telomere sequences and were not deleted from the donor site in the genome, leading to the hypothesis that they were derived from reverse-transcribed RNA. Cotransfection of RNA and an I-SceI expression vector demonstrated insertion of RNA-derived sequences at the DNA-DSB site, and TSIs were suppressed by reverse-transcriptase inhibitors. Both observations support the hypothesis that TSIs were derived from RNA templates. In addition, similar insertions were detected at sites of DNA DSBs induced by transcription activator-like effector nuclease proteins. Whole-genome sequencing of myeloma cell lines revealed additional TSIs, demonstrating that repair of DNA DSBs via insertion was not restricted to experimentally produced DNA DSBs. Analysis of publicly available databases revealed that many of these TSIs are polymorphic in the human genome. Taken together, these results indicate that insertional events should be considered as alternatives to gross chromosomal rearrangements in the interpretation of whole-genome sequence data and that this mutagenic form of DNA repair may play a role in genetic disease, exon shuffling, and mammalian evolution.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Mutagênese Insercional/genética , Retroelementos/genética , Telômero/genética , Linhagem Celular Tumoral , Cinamatos , Biologia Computacional , Variações do Número de Cópias de DNA , Primers do DNA/genética , Vetores Genéticos/genética , Humanos , Higromicina B/análogos & derivados , Reação em Cadeia da Polimerase
18.
Blood ; 123(5): 725-33, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24345755

RESUMO

Disease relapse remains a major factor limiting the survival of cancer patients. In the plasma cell malignancy multiple myeloma (MM), nearly all patients ultimately succumb to disease relapse and progression despite new therapies that have improved remission rates. Tumor regrowth indicates that clonogenic growth potential is continually maintained, but the determinants of self-renewal in MM are not well understood. Normal stem cells are regulated by extrinsic niche factors, and the tumor microenvironment (TME) may similarly influence tumor cell clonogenic growth and self-renewal. Growth differentiation factor 15 (GDF15) is aberrantly secreted by bone marrow stromal cells (BMSCs) in MM. We found that GDF15 is produced by BMSCs after direct contact with plasma cells and enhances the tumor-initiating potential and self-renewal of MM cells in a protein kinase B- and SRY (sex-determining region Y)-box-dependent manner. Moreover, GDF15 induces the expansion of MM tumor-initiating cells (TICs), and changes in the serum levels of GDF15 were associated with changes in the frequency of clonogenic MM cells and the progression-free survival of MM patients. These findings demonstrate that GDF15 plays a critical role in mediating the interaction among mature tumor cells, the TME, and TICs, and strategies targeting GDF15 may affect long-term clinical outcomes in MM.


Assuntos
Fator 15 de Diferenciação de Crescimento/metabolismo , Mieloma Múltiplo/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
19.
Blood ; 123(24): 3770-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24782505

RESUMO

Chemotherapeutic resistance remains a significant hurdle in the treatment of multiple myeloma (MM) and is significantly mediated by interactions between MM cells and stromal cells of the bone marrow microenvironment. Despite the importance of these interactions, the specific molecules and downstream signaling components involved remain incompletely understood. We have previously shown that the prototypic T-cell costimulatory receptor CD28, which is also expressed on MM cells, is a key mediator of MM survival and apoptotic resistance. Crosslinking CD28 by agonistic antibodies or myeloid dendritic cells (DC; these express the CD28 ligands CD80/CD86) prevents apoptosis caused by chemotherapy or serum withdrawal. We now report that CD28 pro-survival signaling is dependent upon downstream activation of phosphatidyl-inositol 3-kinase/Akt, inactivation of the transcription factor FoxO3a, and decreased expression of the pro-apoptotic molecule Bim. Conversely, blocking the CD28-CD80/CD86 interaction between MM cells and DC in vitro abrogates the DC's ability to protect MM cells against chemotherapy-induced death. Consistent with these observations, in vivo blockade of CD28-CD80/CD86 in the Vk*MYC murine myeloma model sensitizes MM cells to chemotherapy and significantly reduces tumor burden. Taken together, our findings suggest that CD28 is an important mediator of MM survival during stress and can be targeted to overcome chemotherapy resistance.


Assuntos
Antineoplásicos/uso terapêutico , Antígenos CD28/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Animais , Anticorpos/farmacologia , Antígenos CD28/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Células Dendríticas/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética
20.
Blood ; 123(21): 3305-15, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24723682

RESUMO

Targeted modulation of microenvironmental regulatory pathways may be essential to control myeloma and other genetically/clonally heterogeneous cancers. Here we report that human myeloma-associated monocytes/macrophages (MAM), but not myeloma plasma cells, constitute the predominant source of interleukin-1ß (IL-1ß), IL-10, and tumor necrosis factor-α at diagnosis, whereas IL-6 originates from stromal cells and macrophages. To dissect MAM activation/cytokine pathways, we analyzed Toll-like receptor (TLR) expression in human myeloma CD14(+) cells. We observed coregulation of TLR2 and TLR6 expression correlating with local processing of versican, a proteoglycan TLR2/6 agonist linked to carcinoma progression. Versican has not been mechanistically implicated in myeloma pathogenesis. We hypothesized that the most readily accessible target in the versican-TLR2/6 pathway would be the mitogen-activated protein 3 (MAP3) kinase, TPL2 (Cot/MAP3K8). Ablation of Tpl2 in the genetically engineered in vivo myeloma model, Vκ*MYC, led to prolonged disease latency associated with plasma cell growth defect. Tpl2 loss abrogated the "inflammatory switch" in MAM within nascent myeloma lesions and licensed macrophage repolarization in established tumors. MYC activation/expression in plasma cells was independent of Tpl2 activity. Pharmacologic TPL2 inhibition in human monocytes led to dose-dependent attenuation of IL-1ß induction/secretion in response to TLR2 stimulation. Our results highlight a TLR2/6-dependent TPL2 pathway as novel therapeutic target acting nonautonomously through macrophages to control myeloma progression.


Assuntos
MAP Quinase Quinase Quinases/imunologia , Macrófagos/patologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas/imunologia , Animais , Citocinas/análise , Citocinas/imunologia , Descoberta de Drogas , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1beta/análise , Interleucina-1beta/imunologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptor 2 Toll-Like/agonistas , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/imunologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA