Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Glob Chang Biol ; 30(1): e16995, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916642

RESUMO

Wildfires are increasing in frequency, intensity, and extent globally due to climate change and they can alter forest composition, structure, and function. The destruction and subsequent regrowth of young vegetation can modify the ecosystem evapotranspiration and downstream water availability. However, the response of forest recovery on hydrology is not well known with even the sign of evapotranspiration and water yield changes following forest fires being uncertain across the globe. Here, we quantify the effects of forest regrowth after catastrophic wildfires on evapotranspiration and runoff in the world's tallest angiosperm forest (Eucalyptus regnans) in Australia. We combine eddy covariance measurements including pre- and post-fire periods, mechanistic ecohydrological modeling and then extend the analysis spatially to multiple fires in eucalypt-dominated forests in south-eastern Australia by utilizing remote sensing. We find a fast recovery of evapotranspiration which reaches and exceeds pre-fire values within 2 years after the bushfire, a result confirmed by eddy covariance data, remote sensing, and modeling. Such a fast evapotranspiration recovery is likely generalizable to tall eucalypt forests in south-eastern Australia as shown by remote sensing. Once climate variability is discounted, ecohydrological modeling shows evapotranspiration rates from the recovering forest which reach peak values of +20% evapotranspiration 3 years post-fire. As a result, modeled runoff decreases substantially. Contrary to previous research, we find that the increase in modeled evapotranspiration is largely caused by the aerodynamic effects of a much shorter forest height leading to higher surface temperature, higher humidity gradients and therefore increased transpiration. However, increases in evapotranspiration as well as decreases in runoff caused by the young forest are constrained by energy and water limitations. Our result of an increase in evapotranspiration due to aerodynamic warming in a shorter forest after wildfires could occur in many parts of the world experiencing forest disturbances.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Água , Florestas
2.
Glob Chang Biol ; 28(7): 2360-2380, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34854173

RESUMO

Despite their size and contribution to the global carbon cycle, we have limited understanding of tropical savannas and their current trajectory with climate change and anthropogenic pressures. Here we examined interannual variability and externally forced long-term changes in carbon and water exchange from a high rainfall savanna site in the seasonal tropics of north Australia. We used an 18-year flux data time series (2001-2019) to detect trends and drivers of fluxes of carbon and water. Significant positive trends in gross primary productivity (GPP, 15.4 g C m2  year-2 ), ecosystem respiration (Reco , 8.0 g C m2  year-2 ), net ecosystem productivity (NEE, 7.4 g C m2  year-2 ) and ecosystem water use efficiency (WUE, 0.0077 g C kg H2 O-1  year-1 ) were computed. There was a weaker, non-significant trend in latent energy exchange (LE, 0.34 W m-2  year-1 ). Rainfall from a nearby site increased statistically over a 45-year period during the observation period. To examine the dominant drivers of changes in GPP and WUE, we used a random forest approach and a terrestrial biosphere model to conduct an attribution experiment. Radiant energy was the dominant driver of wet season fluxes, whereas soil water content dominated dry season fluxes. The model attribution suggested that [CO2 ], precipitation and Tair accounting for 90% of the modelled trend in GPP and WUE. Positive trends in fluxes were largest in the dry season implying tree components were a larger contributor than the grassy understorey. Fluxes and environmental drivers were not significant during the wet season, the period when grasses are active. The site is potentially still recovering from a cyclone 45 years ago and regrowth from this event may also be contributing to the observed trends in sequestration, highlighting the need to understand fluxes and their drivers from sub-diurnal to decadal scales.


Assuntos
Ecossistema , Pradaria , Carbono , Ciclo do Carbono , Dióxido de Carbono , Poaceae , Estações do Ano , Água
3.
Glob Chang Biol ; 28(4): 1493-1515, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34799950

RESUMO

It is well documented that energy balance and other remote sensing-based evapotranspiration (ET) models face greater uncertainty over water-limited tree-grass ecosystems (TGEs), representing nearly 1/6th of the global land surface. Their dual vegetation strata, the grass-dominated understory and tree-dominated overstory, make for distinct structural, physiological and phenological characteristics, which challenge models compared to more homogeneous and energy-limited ecosystems. Along with this, the contribution of grasses and trees to total transpiration (T), along with their different climatic drivers, is still largely unknown nor quantified in TGEs. This study proposes a thermal-based three-source energy balance (3SEB) model, accommodating an additional vegetation source within the well-known two-source energy balance (TSEB) model. The model was implemented at both tower and continental scales using eddy-covariance (EC) TGE sites, with variable tree canopy cover and rainfall (P) regimes and Meteosat Second Generation (MSG) images. 3SEB robustly simulated latent heat (LE) and related energy fluxes in all sites (Tower: LE RMSD ~60 W/m2 ; MSG: LE RMSD ~90 W/m2 ), improving over both TSEB and seasonally changing TSEB (TSEB-2S) models. In addition, 3SEB inherently partitions water fluxes between the tree, grass and soil sources. The modelled T correlated well with EC T estimates (r > .76), derived from a machine learning ET partitioning method. The T/ET was found positively related to both P and leaf area index, especially compared to the decomposed grass understory T/ET. However, trees and grasses had contrasting relations with respect to monthly P. These results demonstrate the importance in decomposing total ET into the different vegetation sources, as they have distinct climatic drivers, and hence, different relations to seasonal water availability. These promising results improved ET and energy flux estimations over complex TGEs, which may contribute to enhance global drought monitoring and understanding, and their responses to climate change feedbacks.


Assuntos
Ecossistema , Árvores , Poaceae/fisiologia , Tecnologia de Sensoriamento Remoto , Solo , Árvores/fisiologia , Água
4.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315565

RESUMO

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Assuntos
Dióxido de Carbono , Ecossistema , Austrália , Ciclo do Carbono , Mudança Climática
5.
Glob Chang Biol ; 27(19): 4727-4744, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165839

RESUMO

Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.


Assuntos
Ciclo do Carbono , Ecossistema , Austrália , Florestas , Estações do Ano , Temperatura
6.
Glob Chang Biol ; 26(10): 5899-5913, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32686242

RESUMO

The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet-dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣFaq ). Here, we determined the NLCB of a lowland catchment (~140 km2 ) in tropical Australia over 2 years by evaluating net terrestrial productivity (NEP), fire-related C emissions and ΣFaq (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334 Mg C km-2  year-1 ), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (-56 Mg C km-2  year-1 ) and ΣFaq (-28 Mg C km-2  year-1 ) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣFaq significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events-up to 39% of annual ΣFaq was exported in one event. We hypothesize that wetter and hotter conditions in the wet-dry tropics in the future will increase ΣFaq and fire emissions, potentially further reducing the current C sink in the region. More long-term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet-dry tropics where our result indicating a significant C sink may not hold.


Assuntos
Carbono , Ecossistema , Austrália , Carbono/análise , Dióxido de Carbono/análise , Pradaria
7.
Glob Chang Biol ; 25(4): e4-e6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614142

RESUMO

In our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.

8.
Glob Chang Biol ; 24(6): 2530-2544, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29488666

RESUMO

Tree-grass savannas are a widespread biome and are highly valued for their ecosystem services. There is a need to understand the long-term dynamics and meteorological drivers of both tree and grass productivity separately in order to successfully manage savannas in the future. This study investigated the interannual variability (IAV) of tree and grass gross primary productivity (GPP) by combining a long-term (15 year) eddy covariance flux record and model estimates of tree and grass GPP inferred from satellite remote sensing. On a seasonal basis, the primary drivers of tree and grass GPP were solar radiation in the wet season and soil moisture in the dry season. On an interannual basis, soil water availability had a positive effect on tree GPP and a negative effect on grass GPP. No linear trend in the tree-grass GPP ratio was observed over the 15-year study period. However, the tree-grass GPP ratio was correlated with the modes of climate variability, namely the Southern Oscillation Index. This study has provided insight into the long-term contributions of trees and grasses to savanna productivity, along with their respective meteorological determinants of IAV.


Assuntos
Mudança Climática , Pradaria , Poaceae/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Northern Territory , Tecnologia de Sensoriamento Remoto , Estações do Ano , Solo , Luz Solar , Fatores de Tempo , Água/análise
9.
Glob Chang Biol ; 24(9): 3990-4008, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29733483

RESUMO

Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2  = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2  = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2  = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.


Assuntos
Ciclo do Carbono , Clorofila/efeitos da radiação , Ecossistema , Luz Solar , Carbono , Monitoramento Ambiental , Fluorescência , Florestas , Fotossíntese , Imagens de Satélites
10.
New Phytol ; 205(3): 1211-1226, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25388673

RESUMO

Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO2 fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Incêndios , Pradaria , África , Austrália , Biomassa , Simulação por Computador , Modelos Teóricos , Transpiração Vegetal/fisiologia , Rios , Fatores de Tempo , Árvores/anatomia & histologia
11.
Glob Chang Biol ; 21(4): 1552-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25230693

RESUMO

Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.


Assuntos
Biomassa , Sequestro de Carbono , Carbono/análise , Conservação dos Recursos Naturais , Solo/química , Biodiversidade , Mudança Climática , Eucalyptus/crescimento & desenvolvimento , Agricultura Florestal , Estações do Ano , Árvores , Vitória
12.
Glob Chang Biol ; 21(1): 62-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044767

RESUMO

Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.


Assuntos
Incêndios , Pradaria , Austrália , Carbono/química , Clima , Mudança Climática , Ecossistema , Água
13.
Ecol Lett ; 17(1): 125-e2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24165435

RESUMO

Understanding effects of climate change on ecosystems will require a diverse range of approaches. We proposed using downscaled climate models to generate realistic weather scenarios as experimental treatments. Kreyling et al. propose a gradient approach to determine the shape of response functions. These approaches are different, but highly complementary.


Assuntos
Mudança Climática , Ecossistema , Modelos Teóricos , Projetos de Pesquisa/tendências
14.
Ecol Lett ; 16(6): 799-806, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23438320

RESUMO

Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments.


Assuntos
Mudança Climática , Ecossistema , Modelos Teóricos , Projetos de Pesquisa/tendências , Adaptação Fisiológica , Calibragem , Água Doce , Biologia Marinha , Oceanos e Mares , Temperatura
15.
New Phytol ; 194(3): 775-783, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22404566

RESUMO

• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Temperatura , Aclimatação , Dióxido de Carbono/efeitos da radiação , Mudança Climática , Plantas/efeitos da radiação , Chuva , Energia Solar
16.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316310

RESUMO

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Assuntos
Ecossistema , Pergelissolo , Estações do Ano , Regiões Árticas , Mudança Climática
17.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137034

RESUMO

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Assuntos
Florestas , Aquecimento Global , Isópteros , Madeira , Animais , Ciclo do Carbono , Temperatura , Clima Tropical , Madeira/microbiologia
18.
Sci Data ; 7(1): 225, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647314

RESUMO

The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

19.
Nat Commun ; 8(1): 110, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740122

RESUMO

Quantifying the responses of the coupled carbon and water cycles to current global warming and rising atmospheric CO2 concentration is crucial for predicting and adapting to climate changes. Here we show that terrestrial carbon uptake (i.e. gross primary production) increased significantly from 1982 to 2011 using a combination of ground-based and remotely sensed land and atmospheric observations. Importantly, we find that the terrestrial carbon uptake increase is not accompanied by a proportional increase in water use (i.e. evapotranspiration) but is largely (about 90%) driven by increased carbon uptake per unit of water use, i.e. water use efficiency. The increased water use efficiency is positively related to rising CO2 concentration and increased canopy leaf area index, and negatively influenced by increased vapour pressure deficits. Our findings suggest that rising atmospheric CO2 concentration has caused a shift in terrestrial water economics of carbon uptake.The response of the coupled carbon and water cycles to anthropogenic climate change is unclear. Here, the authors show that terrestrial carbon uptake increased significantly from 1982 to 2011 and that this increase is largely driven by increased water-use efficiency, rather than an increase in water use.

20.
Sci Rep ; 7(1): 11720, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916760

RESUMO

Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the increasing trend and interannual variation of land carbon uptake over the last three decades, yet the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems in Australia, we found the the correlation between gross primary production (GPP) and ecosystem respiration (Re) was significant for non-forest ecosystems, but was not for forests. In non-forest ecosystems, both GPP and Re increased with rainfall, and, consequently net ecosystem production (NEP) increased with rainfall. In forest ecosystems, GPP and Re were insensitive to rainfall. Furthermore sensitivity of GPP to rainfall was dominated by the rainfall-driven variation of LAI rather GPP per unit LAI in non-forest ecosystems, which was not correctly reproduced by current land models, indicating that the mechanisms underlying the response of LAI to rainfall should be targeted for future model development.


Assuntos
Carbono/metabolismo , Ecossistema , Florestas , Pradaria , Folhas de Planta/anatomia & histologia , Chuva , Austrália , Ciclo do Carbono , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA