Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cell ; 160(4): 771-784, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679766

RESUMO

Aneuploid genomes, characterized by unbalanced chromosome stoichiometry (karyotype), are associated with cancer malignancy and drug resistance of pathogenic fungi. The phenotypic diversity resulting from karyotypic diversity endows the cell population with superior adaptability. We show here, using a combination of experimental data and a general stochastic model, that the degree of phenotypic variation, thus evolvability, escalates with the degree of overall growth suppression. Such scaling likely explains the challenge of treating aneuploidy diseases with a single stress-inducing agent. Instead, we propose the design of an "evolutionary trap" (ET) targeting both karyotypic diversity and fitness. This strategy entails a selective condition "channeling" a karyotypically divergent population into one with a predominant and predictably drugable karyotypic feature. We provide a proof-of-principle case in budding yeast and demonstrate the potential efficacy of this strategy toward aneuploidy-based azole resistance in Candida albicans. By analyzing existing pharmacogenomics data, we propose the potential design of an ET against glioblastoma.


Assuntos
Aneuploidia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Fúngica , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Fluconazol/farmacologia , Humanos , Higromicina B/farmacologia , Irinotecano , Saccharomyces cerevisiae/metabolismo
2.
Nature ; 630(8015): 149-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778096

RESUMO

Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.


Assuntos
Aneuploidia , Complexo de Endopeptidases do Proteassoma , Proteólise , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Mecanismo Genético de Compensação de Dose , Variação Genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Proteoma/genética , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação , Perfilação da Expressão Gênica , Genômica
3.
Cell ; 150(2): 304-16, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817893

RESUMO

The centromere is a specialized chromosomal structure that regulates chromosome segregation. Centromeres are marked by a histone H3 variant. In budding yeast, the histone H3 variant Cse4 is present in a single centromeric nucleosome. Experimental evidence supports several different models for the structure of centromeric nucleosomes. To investigate Cse4 copy number in live yeast, we developed a method coupling fluorescence correlation spectroscopy and calibrated imaging. We find that centromeric nucleosomes have one copy of Cse4 during most of the cell cycle, whereas two copies are detected at anaphase. The proposal of an anaphase-coupled structural change is supported by Cse4-Cse4 interactions, incorporation of Cse4, and the absence of Scm3 in anaphase. Nucleosome reconstitution and ChIP suggests both Cse4 structures contain H2A/H2B. The increase in Cse4 intensity and deposition at anaphase are also observed in Candida albicans. Our experimental evidence supports a cell-cycle-coupled oscillation of centromeric nucleosome structure in yeast.


Assuntos
Candida albicans/citologia , Ciclo Celular , Centrômero/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/citologia , Anáfase , Candida albicans/química , Candida albicans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/análise , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
PLoS Genet ; 18(9): e1010390, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084128

RESUMO

Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.


Assuntos
Heme , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Candida albicans/metabolismo , Heme/genética , Heme/metabolismo , Heme Oxigenase (Desciclizante)/química , Heme Oxigenase (Desciclizante)/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Homeostase/genética , Ferro/metabolismo , Peroxidases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38446018

RESUMO

The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in Candida albicans, a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin SIR2 in C. albicans phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. SIR2 mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of SIR2 in other SC5314-derived backgrounds, including newly constructed BWP17 sir2Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with SIR2 to increase phenotypic switching in this BWP17 sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived sir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.


Assuntos
Candida albicans , Cromatina , Humanos , Candida albicans/genética , Epigênese Genética , Redes Reguladoras de Genes , Fenótipo
6.
Immunity ; 42(2): 356-366, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25680275

RESUMO

Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper 17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans. We found that only yeast induced Th17 cell responses through a mechanism that required Dectin-1-mediated expression of interleukin-6 (IL-6) by Langerhans cells. Filamentous forms induced Th1 without Th17 cell responses due to the absence of Dectin-1 ligation. Notably, Th17 cell responses provided protection against cutaneous infection while Th1 cell responses provided protection against systemic infection. Thus, C. albicans morphology drives distinct T helper cell responses that provide tissue-specific protection. These findings provide insight into compartmentalization of Th cell responses and C. albicans pathogenesis and have critical implications for vaccine strategies.


Assuntos
Candidíase Mucocutânea Crônica/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Células Th17/citologia , Células Th17/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida albicans/imunologia , Candidíase Mucocutânea Crônica/microbiologia , Interleucina-6/biossíntese , Interleucina-6/genética , Interleucina-6/imunologia , Células de Langerhans/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Pele/imunologia , Pele/microbiologia , Células Th1/citologia , Células Th1/imunologia
7.
Angew Chem Int Ed Engl ; 63(9): e202314728, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38161189

RESUMO

Echinocandins are a class of antifungal drugs that inhibit the activity of the ß-(1,3)-glucan synthase complex, which synthesizes fungal cell wall ß-(1,3)-glucan. Echinocandin resistance is linked to mutations in the FKS gene, which encodes the catalytic subunit of the glucan synthase complex. We present a molecular-docking-based model that provides insight into how echinocandins interact with the target Fks protein: echinocandins form a ternary complex with both Fks and membrane lipids. We used reductive dehydration of alcohols to generate dehydroxylated echinocandin derivatives and evaluated their potency against a panel of Candida pathogens constructed by introducing resistance-conferring mutations in the FKS gene. We found that removing the hemiaminal alcohol, which drives significant conformational alterations in the modified echinocandins, reduced their efficacy. Conversely, eliminating the benzylic alcohol of echinocandins enhanced potency by up to two orders of magnitude, in a manner dependent upon the resistance-conferring mutation. Strains that have developed resistance to either rezafungin, the most recently clinically approved echinocandin, or its dehydroxylated derivative RZF-1, exhibit high resistance to rezafungin while demonstrating moderate resistance to RZF-1. These findings provide valuable insight for combating echinocandin resistance through chemical modifications.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Equinocandinas/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutação , Testes de Sensibilidade Microbiana
8.
Mol Biol Evol ; 38(10): 4095-4115, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34175952

RESUMO

Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.


Assuntos
Antibacterianos , Bartonella/genética , Rifampina , Antibacterianos/farmacologia , Mutagênese , Mutação , Rifampina/farmacologia , Resposta SOS em Genética
9.
Proc Natl Acad Sci U S A ; 116(29): 14698-14707, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31253703

RESUMO

Determining the fitness of specific microbial genotypes has extensive application in microbial genetics, evolution, and biotechnology. While estimates from growth curves are simple and allow high throughput, they are inaccurate and do not account for interactions between costs and benefits accruing over different parts of a growth cycle. For this reason, pairwise competition experiments are the current "gold standard" for accurate estimation of fitness. However, competition experiments require distinct markers, making them difficult to perform between isolates derived from a common ancestor or between isolates of nonmodel organisms. In addition, competition experiments require that competing strains be grown in the same environment, so they cannot be used to infer the fitness consequence of different environmental perturbations on the same genotype. Finally, competition experiments typically consider only the end-points of a period of competition so that they do not readily provide information on the growth differences that underlie competitive ability. Here, we describe a computational approach for predicting density-dependent microbial growth in a mixed culture utilizing data from monoculture and mixed-culture growth curves. We validate this approach using 2 different experiments with Escherichia coli and demonstrate its application for estimating relative fitness. Our approach provides an effective way to predict growth and infer relative fitness in mixed cultures.


Assuntos
Biotecnologia/métodos , Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos , Técnicas de Cultura de Células/métodos , Biologia Computacional , Escherichia coli/genética , Genótipo
10.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091232

RESUMO

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Assuntos
Candida albicans/genética , Candidíase Bucal/genética , Orofaringe/microbiologia , Animais , Candida albicans/metabolismo , Candidíase/genética , Modelos Animais de Doenças , Células Epiteliais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Fenótipo , Trissomia/genética , Virulência
11.
Mycoses ; 64(1): 78-85, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33000505

RESUMO

BACKGROUND: Treatment of Candida albicans bloodstream infection with fluconazole is associated with significant mortality despite in vitro susceptibility to the drug. OBJECTIVES: We sought to determine whether tolerance to fluconazole is predictive of treatment failure. METHODS: We reviewed patients with monomicrobial C albicans bloodstream infection who received primary monotherapy with fluconazole. Tolerance to fluconazole, defined as the fraction of growth above the MIC, was quantified using the disc diffusion assay and digital image analyses. Survival analyses were performed with host and treatment factors as predictive variables. RESULTS: Among 44 patients included in the study, all-cause mortality was 29.5% at 30 days and 43.1% at 12 weeks. Forty-one isolates (93%) were susceptible to fluconazole (MIC50, 0.5 mg/L). Fluconazole tolerance was strongly associated with death for patients treated with fluconazole within 24 h of candidemia onset (33.3% vs 0%; p = .007), but not among patients whose treatment was started later. MIC did not correlate with survival, regardless of treatment delay. A Cox regression model including time to treatment, tolerance to fluconazole, fluconazole exposure and Pitt bacteraemia score provided good prediction of treatment outcome (area under the receiver-operator curve, 0.82). CONCLUSIONS: In patients with C albicans bloodstream infection, tolerance testing was predictive of fluconazole efficacy if the drug was started early. Further study is required to validate the utility of this metric to guide treatment choices.


Assuntos
Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidíase/tratamento farmacológico , Fluconazol/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Candida albicans , Candidíase/mortalidade , Estudos de Coortes , Farmacorresistência Fúngica , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Análise de Sobrevida , Falha de Tratamento , Resultado do Tratamento
12.
PLoS Genet ; 14(4): e1007326, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630599

RESUMO

Gene duplication facilitates functional diversification and provides greater phenotypic flexibility to an organism. Expanded gene families arise through repeated gene duplication but the extent of functional divergence that accompanies each paralogous gene is generally unexplored because of the difficulty in isolating the effects of single family members. The telomere-associated (TLO) gene family is a remarkable example of gene family expansion, with 14 members in the more pathogenic Candida albicans relative to two TLO genes in the closely-related species C. dubliniensis. TLO genes encode interchangeable Med2 subunits of the major transcriptional regulatory complex Mediator. To identify biological functions associated with each C. albicans TLO, expression of individual family members was regulated using a Tet-ON system and the strains were assessed across a range of phenotypes involved in growth and virulence traits. All TLOs affected multiple phenotypes and a single phenotype was often affected by multiple TLOs, including simple phenotypes such as cell aggregation and complex phenotypes such as virulence in a Galleria mellonella model of infection. No phenotype was regulated by all TLOs, suggesting neofunctionalization or subfunctionalization of ancestral properties among different family members. Importantly, regulation of three phenotypes could be mapped to individual polymorphic sites among the TLO genes, including an indel correlated with two phenotypes, growth in sucrose and macrophage killing. Different selective pressures have operated on the TLO sequence, with the 5' conserved Med2 domain experiencing purifying selection and the gene/clade-specific 3' end undergoing extensive positive selection that may contribute to the impact of individual TLOs on phenotypic variability. Therefore, expansion of the TLO gene family has conferred unique regulatory properties to each paralog such that it influences a range of phenotypes. We posit that the genetic diversity associated with this expansion contributed to C. albicans success as a commensal and opportunistic pathogen.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Variação Genética , Complexo Mediador/genética , Animais , Candida albicans/classificação , Candida albicans/patogenicidade , Doxiciclina/farmacologia , Proteínas Fúngicas/classificação , Duplicação Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Larva/microbiologia , Macrófagos/microbiologia , Complexo Mediador/classificação , Camundongos , Mariposas/microbiologia , Família Multigênica , Filogenia , Células RAW 264.7 , Telômero/genética , Virulência/genética
13.
Mol Biol Evol ; 36(8): 1768-1782, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028698

RESUMO

Aneuploidy is common both in tumor cells responding to chemotherapeutic agents and in fungal cells adapting to antifungal drugs. Because aneuploidy simultaneously affects many genes, it has the potential to confer multiple phenotypes to the same cells. Here, we analyzed the mechanisms by which Candida albicans, the most prevalent human fungal pathogen, acquires the ability to survive both chemotherapeutic agents and antifungal drugs. Strikingly, adaptation to both types of drugs was accompanied by the acquisition of specific whole-chromosome aneuploidies, with some aneuploid karyotypes recovered independently and repeatedly from very different drug conditions. Specifically, strains selected for survival in hydroxyurea, an anticancer drug, acquired cross-adaptation to caspofungin, a first-line antifungal drug, and both acquired traits were attributable to trisomy of the same chromosome: loss of trisomy was accompanied by loss of adaptation to both drugs. Mechanistically, aneuploidy simultaneously altered the copy number of most genes on chromosome 2, yet survival in hydroxyurea or caspofungin required different genes and stress response pathways. Similarly, chromosome 5 monosomy conferred increased tolerance to both fluconazole and to caspofungin, antifungals with different mechanisms of action. Thus, the potential for cross-adaptation is not a feature of aneuploidy per se; rather, it is dependent on specific genes harbored on given aneuploid chromosomes. Furthermore, pre-exposure to hydroxyurea increased the frequency of appearance of caspofungin survivors, and hydroxyurea-adapted C. albicans cells were refractory to antifungal drug treatment in a mouse model of systemic candidiasis. This highlights the potential clinical consequences for the management of cancer chemotherapy patients at risk of fungal infections.


Assuntos
Aneuploidia , Antifúngicos , Antineoplásicos , Candida albicans/genética , Caspofungina , Farmacorresistência Fúngica/genética , Hidroxiureia , Adaptação Biológica , Animais , Calcineurina , Cromossomos Fúngicos , Camundongos
14.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690639

RESUMO

The occurrence and recurrence of mucosal biofilm-related Candida infections, such as oral and vulvovaginal candidiasis, are serious clinical issues. Vaginal infections caused by Candida spp., for example, affect 70 to 75% of women at least once during their lives. Miconazole (MCZ) is the preferred topical treatment against these fungal infections, yet it has only moderate antibiofilm activity. Through screening of a drug-repurposing library, we identified the quaternary ammonium compound domiphen bromide (DB) as an MCZ potentiator against Candida biofilms. DB displayed synergistic anti-Candida albicans biofilm activity with MCZ, reducing the number of viable biofilm cells 1,000-fold. In addition, the MCZ-DB combination also resulted in significant killing of biofilm cells of azole-resistant C. albicans, C. glabrata, and C. auris isolates. In vivo, the MCZ-DB combination had significantly improved activity in a vulvovaginal candidiasis rat model compared to that of single-compound treatments. Data from an artificial evolution experiment indicated that the development of resistance against the combination did not occur, highlighting the potential of MCZ-DB combination therapy to treat Candida biofilm-related infections.


Assuntos
Candida , Miconazol , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Candida albicans , Feminino , Humanos , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário , Ratos
15.
Curr Genet ; 66(6): 1117-1134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32681306

RESUMO

In vivo transposon mutagenesis, coupled with deep sequencing, enables large-scale genome-wide mutant screens for genes essential in different growth conditions. We analyzed six large-scale studies performed on haploid strains of three yeast species (Saccharomyces cerevisiae, Schizosaccaromyces pombe, and Candida albicans), each mutagenized with two of three different heterologous transposons (AcDs, Hermes, and PiggyBac). Using a machine-learning approach, we evaluated the ability of the data to predict gene essentiality. Important data features included sufficient numbers and distribution of independent insertion events. All transposons showed some bias in insertion site preference because of jackpot events, and preferences for specific insertion sequences and short-distance vs long-distance insertions. For PiggyBac, a stringent target sequence limited the ability to predict essentiality in genes with few or no target sequences. The machine learning approach also robustly predicted gene function in less well-studied species by leveraging cross-species orthologs. Finally, comparisons of isogenic diploid versus haploid S. cerevisiae isolates identified several genes that are haplo-insufficient, while most essential genes, as expected, were recessive. We provide recommendations for the choice of transposons and the inference of gene essentiality in genome-wide studies of eukaryotic haploid microbes such as yeasts, including species that have been less amenable to classical genetic studies.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Essenciais/genética , Filogenia , Saccharomyces cerevisiae/genética , Candida albicans/genética , Genoma Fúngico/genética , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Insercional
16.
Immunity ; 35(2): 260-72, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21782478

RESUMO

Skin-resident dendritic cells (DCs) are well positioned to encounter cutaneous pathogens and are required for the initiation of adaptive immune responses. There are at least three subsets of skin DC- Langerhans cells (LC), Langerin(+) dermal DCs (dDCs), and classic dDCs. Whether these subsets have distinct or redundant function in vivo is poorly understood. Using a Candida albicans skin infection model, we have shown that direct presentation of antigen by LC is necessary and sufficient for the generation of antigen-specific T helper-17 (Th17) cells but not for the generation of cytotoxic lymphocytes (CTLs). In contrast, Langerin(+) dDCs are required for the generation of antigen specific CTL and Th1 cells. Langerin(+) dDCs also inhibited the ability of LCs and classic DCs to promote Th17 cell responses. This work demonstrates that skin-resident DC subsets promote distinct and opposing antigen-specific responses.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Células Dendríticas/metabolismo , Subpopulações de Linfócitos T/metabolismo , Células Th17/metabolismo , Transferência Adotiva , Animais , Antígenos de Bactérias/imunologia , Antígenos de Superfície/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/patologia , Células Cultivadas , Apresentação Cruzada , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Lectinas Tipo C/biossíntese , Ativação Linfocitária , Lectinas de Ligação a Manose/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Repressoras/genética , Pele/microbiologia , Pele/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/microbiologia , Subpopulações de Linfócitos T/parasitologia , Células Th17/imunologia , Células Th17/microbiologia , Células Th17/patologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-31285227

RESUMO

Echinocandins are the recommended first-line antifungals for treatment of invasive candidiasis. The increasing number of Candida glabrata strains resistant against echinocandins is an emerging health care concern. The rapid detection of resistant C. glabrata isolates is an urgent requirement for clinical laboratories. In this study, we developed the MALDI Biotyper antibiotic (antifungal) susceptibility test rapid assay (MBT ASTRA) for the rapid detection of anidulafungin-resistant C. glabrata isolates directly from positive blood cultures. Of 100 C. glabrata strains, MBT ASTRA classified 69 as susceptible and 29 as resistant. Microdilution assays performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines, used as a standard reference, identified 65 susceptible, 9 intermediate, and 26 resistant isolates. Sequencing of hot spot 1 and hot spot 2 regions of the FKS1 and FKS2 genes classified 86 susceptible and 14 resistant isolates. The MBT ASTRA had sensitivity and specificity of 80% and 95%, respectively, compared to the microdilution method. Positive and negative agreement of MBT ASTRA was calculated at 100% and 80%, respectively, compared with the molecular sequencing approach. Together, these results revealed a high accuracy of MBT ASTRA compared to microdilution according to the CLSI and PCR analysis, resulting in a categorical agreement of 90% and 83%, respectively. The validity of MBT ASTRA was 98%. Importantly, MBT ASTRA provided antifungal susceptibility testing (AFST) within 6 h that was both accurate and reliable compared to the other two approaches, which require at least 24 h or are costly. Therefore, this method has the potential to facilitate clinical AFST rapidly at low sample costs for clinical labs already equipped with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).


Assuntos
Anidulafungina/farmacologia , Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Hemocultura , Candida glabrata/crescimento & desenvolvimento , Candida glabrata/isolamento & purificação , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Caspofungina/farmacologia , Proteínas Fúngicas/genética , Expressão Gênica , Glucosiltransferases/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/normas , Sensibilidade e Especificidade , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
18.
Nature ; 494(7435): 55-9, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23364695

RESUMO

Candida albicans, the most prevalent human fungal pathogen, is considered to be an obligate diploid that carries recessive lethal mutations throughout the genome. Here we demonstrate that C. albicans has a viable haploid state that can be derived from diploid cells under in vitro and in vivo conditions, and that seems to arise through a concerted chromosome loss mechanism. Haploids undergo morphogenetic changes like those of diploids, including the yeast-hyphal transition, chlamydospore formation and a white-opaque switch that facilitates mating. Haploid opaque cells of opposite mating type mate efficiently to regenerate the diploid form, restoring heterozygosity and fitness. Homozygous diploids arise spontaneously by auto-diploidization, and both haploids and auto-diploids show a similar reduction in fitness, in vitro and in vivo, relative to heterozygous diploids, indicating that homozygous cell types are transient in mixed populations. Finally, we constructed stable haploid strains with multiple auxotrophies that will facilitate molecular and genetic analyses of this important pathogen.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Diploide , Haploidia , Sexo , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Separação Celular , Citometria de Fluxo , Deleção de Genes , Aptidão Genética , Técnicas Genéticas , Haplótipos , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos ICR , Inoculações Seriadas , Estresse Fisiológico , Virulência/genética
19.
PLoS Genet ; 12(9): e1006317, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27662467

RESUMO

Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D) nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus.

20.
Genome Res ; 25(3): 413-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504520

RESUMO

Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity.


Assuntos
Candida albicans/genética , Variação Genética , Fenótipo , Aneuploidia , Candida albicans/classificação , Candidíase/microbiologia , Cromossomos Fúngicos , Variações do Número de Cópias de DNA , Evolução Molecular , Genoma Fúngico , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA