RESUMO
Foot and mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. This disease is one of the most important in animal health due to its significant socio-economic impact, especially in case of an outbreak. One important challenge associated with this disease is the ability of the FMD virus (FMDV) to persist in its hosts through still unresolved underlying mechanisms. The absence of relevant in vitro models is one factor preventing advancement in our understanding of FMDV persistence. While a primary bovine cell model has been established using cells from FMDV primary and persistence site in cattle, it appeared interesting to develop a similar model based on ovine anatomical sites of interest to compare host-pathogen interactions. Thus, epithelial cells derived from the palatine tonsils and the dorsal soft palate were isolated and cultured. Their epithelial nature was confirmed using immunofluorescence. Following monolayer infection with FMDV O/FRA/1/2001 Clone 2.2, the FMDV-sensitivity of these cells was evaluated. Dorsal soft palate (DSP) cells were also expanded in multilayers at the air-liquid interface to mimic a stratified epithelium sensitive to FMDV infection. Our investigation revealed the presence of infectious virus, as well as viral antigens and viral RNA, up to 35 days after infection of the cell multilayers. Further experiment with DSP cells from different individuals needs to be reproduced to confirm the robustness of the new model of persistence in multilayer DSP. The establishment of such primary cells creates new opportunities for FMDV research and analysis in sheep cells.
RESUMO
Rapid identification and characterization of circulating foot-and-mouth disease virus (FMDV) strains is crucial for effective disease control. In Oman, a few serological and molecular studies have been conducted to identify the strains of FMDV responsible for the outbreaks that have been occurring within the country. In this study, 13 oral epithelial tissue samples from cattle were collected from suspected cases of FMD in Ash Sharqiyah North, Al Batinah North, Dhofar and Ad Dhakhyilia governorates of Oman between 2018 and 2021. FMDV RNA was detected in all samples by real-time RT-PCR and viruses were isolated after one- or two-blind passages in the porcine Instituto Biologico-Rim Suino-2 cell line. Antigen capture ELISA characterized all isolates as serotype A and VP1 phylogenetic analysis placed all sequences within a single clade of the G-I genotype within the A/AFRICA topotype. These sequences shared the closest nucleotide identities to viruses circulating in Bahrain in 2021 (93.5% to 99.5%) and Kenya in 2017 (93.4% to 99.1%). To the best of our knowledge, this is the first time that A/AFRICA/G-I viruses have been detected in Oman. Together with the closely related viruses detected recently in Bahrain, these findings reinforce the importance of deploying effective quarantine control measures to minimize the risks of transboundary transmission of FMD associated with the importation of cattle from East Africa.
Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Animais , Bovinos , Suínos , Febre Aftosa/epidemiologia , Omã/epidemiologia , Filogenia , Doenças dos Bovinos/epidemiologia , Sorogrupo , Surtos de Doenças/veterinária , Genótipo , Doenças dos Suínos/epidemiologiaRESUMO
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals that has a significant socio-economic impact. One concern associated with this disease is the ability of its etiological agent, the FMD virus (FMDV), to persist in its hosts through underlying mechanisms that remain to be elucidated. While persistence has been described in cattle and small ruminants, it is unlikely to occur in pigs. One of the factors limiting the progress in understanding FMDV persistence and, in particular, differential persistence is the lack of suitable in vitro models. A primary bovine cell model derived from the dorsal soft palate, which is the primary site of replication and persistence of FMDV in cattle, has been developed, and it seemed relevant to develop a similar porcine model. Cells from two sites of FMDV replication in pigs, namely, the dorsal soft palate and the oropharyngeal tonsils, were isolated and cultured. The epithelial character of the cells from the dorsal soft palate was then assessed by immunofluorescence. The FMDV-sensitivity of these cells was assessed after monolayer infection with FMDV O/FRA/1/2001 Clone 2.2. These cells were also grown in multilayers at the air-liquid interface to mimic a stratified epithelium susceptible to FMDV infection. Consistent with what has been shown in vivo in pigs, our study showed no evidence of persistence of FMDV in either the monolayer or multilayer model, with no infectious virus detected 28 days after infection. The development of such a model opens up new possibilities for the study and diagnosis of FMDV in porcine cells.
RESUMO
The circulation of Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) in the Middle East has already been reported following serological analyses carried out since the 1980s, mostly on wild ruminants. Thus, an EHD virus (EHDV) strain was isolated in Bahrain in 1983 (serotype 6), and more recently, BT virus (BTV) serotypes 1, 4, 8 and 16 have been isolated in Oman. To our knowledge, no genomic sequence of these different BTV strains have been published. These same BTV or EHDV serotypes have circulated and, for some of them, are still circulating in the Mediterranean basin and/or in Europe. In this study, we used samples from domestic ruminant herds collected in Oman in 2020 and 2021 for suspected foot-and-mouth disease (FMD) to investigate the presence of BTV and EHDV in these herds. Sera and whole blood from goats, sheep and cattle were tested for the presence of viral genomes (by PCR) and antibodies (by ELISA). We were able to confirm the presence of 5 BTV serotypes (1, 4, 8, 10 and 16) and the circulation of EHDV in this territory in 2020 and 2021. The isolation of a BTV-8 strain allowed us to sequence its entire genome and to compare it with another BTV-8 strain isolated in Mayotte and with homologous BTV sequences available on GenBank.
Assuntos
Vírus Bluetongue , Doenças dos Bovinos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Ovinos , Bovinos , Animais , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Sorogrupo , Omã/epidemiologia , Ruminantes , CabrasRESUMO
Foot-and-mouth disease (FMD) affects the livestock industry and socioeconomic sustainability of many African countries. The success of FMD control programs in Africa depends largely on understanding the dynamics of FMD virus (FMDV) spread. In light of the recent outbreaks of FMD that affected the North-Western African countries in 2018 and 2019, we investigated the evolutionary phylodynamics of the causative serotype O viral strains all belonging to the East-Africa 3 topotype (O/EA-3). We analyzed a total of 489 sequences encoding the FMDV VP1 genome region generated from samples collected from 25 African and Western Asian countries between 1974 and 2019. Using Bayesian evolutionary models on genomic and epidemiological data, we inferred the routes of introduction and migration of the FMDV O/EA-3 topotype at the inter-regional scale. We inferred a mean substitution rate of 6.64 × 10-3 nt/site/year and we predicted that the most recent common ancestor for our panel of samples circulated between February 1967 and November 1973 in Yemen, likely reflecting the epidemiological situation in under sampled cattle-exporting East African countries. Our study also reinforces the role previously described of Sudan and South Sudan as a frequent source of FMDVs spread. In particular, we identified two transboundary routes of O/EA-3 diffusion: the first from Sudan to North-East Africa, and from the latter into Israel and Palestine AT; a second from Sudan to Nigeria, Cameroon, and from there to further into West and North-West Africa. This study highlights the necessity to reinforce surveillance at an inter-regional scale in Africa and Western Asia, in particular along the identified migration routes for the implementation of efficient control measures in the fight against FMD.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Teorema de Bayes , Bovinos , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/genética , Nigéria/epidemiologia , Filogenia , SorogrupoRESUMO
The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge. Plasmids were delivered with surface electroporation or needle-free jet injection and European strain-derived PRRSV antigens were targeted or not to the dendritic cell receptor XCR1. Compared to MLV-alone, the DNA-MLV prime- boost regimen slightly improved the IFNγ T-cell response, and substantially increased the antibody response against envelope motives and the nucleoprotein N. The XCR1-targeting of N significantly improved the anti-N specific antibody response. Despite this immuno-potentiation, the DNA-MLV regimen did not further decrease the serum viral load or the nasal viral shedding of the challenge strain over MLV-alone. Finally, the heterologous protection, achieved in absence of detectable effective neutralizing antibodies, was not correlated to the measured antibody or to the IFNγ T-cell response. Therefore, immune correlates of protection remain to be identified and represent an important gap of knowledge in PRRSV vaccinology. This study importantly shows that a naked DNA prime immuno-potentiates an MLV, more on the B than on the IFNγ T-cell response side, and has to be further improved to reach cross-protection.
Assuntos
Imunidade Heteróloga , Esquemas de Imunização , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Mucosa Nasal/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Linfócitos T/imunologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Carga Viral , Vacinas Virais/administração & dosagem , Eliminação de Partículas ViraisRESUMO
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces reproductive disorders in sows and respiratory illnesses in growing pigs and is considered as one of the main pathogenic agents responsible for economic losses in the porcine industry worldwide. Modified live PRRSV vaccines (MLVs) are very effective vaccine types against homologous strains but they present only partial protection against heterologous viral variants. With the goal to induce broad and cross-protective immunity, we generated DNA vaccines encoding B and T antigens derived from a European subtype 1 strain that include T-cell epitope sequences known to be conserved across strains. These antigens were expressed either in a native form or in the form of vaccibodies targeted to the endocytic receptor XCR1 and CD11c expressed by different types of antigen-presenting cells (APCs). When delivered in skin with cationic nanoparticles and surface electroporation, multiple DNA vaccinations as a stand-alone regimen induced substantial antibody and T-cell responses, which were not promoted by targeting antigens to APCs. Interestingly, a DNA-MLV prime-boost strategy strongly enhanced the antibody response and broadened the T-cell responses over the one induced by MLV or DNA-only. The anti-nucleoprotein antibody response induced by the DNA-MLV prime-boost was clearly promoted by targeting the antigen to CD11c and XCR1, indicating a benefit of APC-targeting on the B-cell response. In conclusion, a DNA-MLV prime-boost strategy, by enhancing the potency and breadth of MLV vaccines, stands as a promising vaccine strategy to improve the control of PRRSV in infected herds.
Assuntos
Anticorpos Antivirais/sangue , Esquemas de Imunização , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Formação de Anticorpos , Imunidade Celular , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
DNA vaccination is an attractive technology, based on its well-established manufacturing process, safety profile, adaptability to rapidly combat pandemic pathogens, and stability at ambient temperature; however an optimal delivery method of DNA remains to be determined. As pigs are a relevant model for humans, we comparatively evaluated the efficiency of vaccine DNA delivery in vivo to pigs using dissolvable microneedle patches, intradermal inoculation with needle (ID), surface electroporation (EP), with DNA associated or not to cationic poly-lactic-co-glycolic acid nanoparticles (NPs). We used a luciferase encoding plasmid (pLuc) as a reporter and vaccine plasmids encoding antigens from the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a clinically-significant swine arterivirus. Patches were successful at inducing luciferase expression in skin although at lower level than EP. EP induced the cutaneaous recruitment of granulocytes, of MHC2posCD172Apos myeloid cells and type 1 conventional dendritic cells, in association with local production of IL-1ß, IL-8 and IL-17; these local responses were more limited with ID and undetectable with patches. The addition of NP to EP especially promoted the recruitment of the MHC2posCD172Apos CD163int and CD163neg myeloid subsets. Notably we obtained the strongest and broadest IFNγ T-cell response against a panel of PRRSV antigens with DNAâ¯+â¯NPs delivered by EP, whereas patches and ID were ineffective. The anti-PRRSV IgG responses were the highest with EP administration independently of NPs, mild with ID, and undetectable with patches. These results contrast with the immunogenicity and efficacy previously induced in mice with patches. This study concludes that successful DNA vaccine administration in skin can be achieved in pigs with electroporation and patches, but only the former induces local inflammation, humoral and cellular immunity, with the highest potency when NPs were used. This finding shows the importance of evaluating the delivery and immunogenicity of DNA vaccines beyond the mouse model in a preclinical model relevant to human such as pig and reveals that EP with DNA combined to NP induces strong immunogenicity.
Assuntos
Eletroporação/métodos , Nanopartículas , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Animais , Feminino , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Inflamação/etiologia , Masculino , Agulhas , Plasmídeos , Especificidade da Espécie , Suínos , Vacinas de DNA/imunologia , Vacinas de DNA/toxicidadeRESUMO
Lung inflammation is frequently involved in respiratory conditions and it is strongly controlled by mononuclear phagocytes (MNP). We previously studied porcine lung MNP and described a new population of cells presenting all the features of alveolar macrophages (AM) except for their parenchymal location, that we named AM-like cells. Herein we showed that AM-like cells are macrophages phagocytosing blood-borne particles, in agreement with a pulmonary intravascular macrophages (PIM) identity. PIM have been described microscopically long time ago in species from the Laurasiatheria superorder such as bovine, swine, cats or cetaceans. We observed that PIM were more inflammatory than AM upon infection with the porcine reproductive and respiratory syndrome virus (PRRSV), a major swine pathogen. Moreover, whereas PRRSV was thought to mainly target AM, we observed that PIM were a major producer of virus. The PIM infection was more correlated with viremia in vivo than AM infection. Finally like AM, PIM-expressed genes were characteristic of an embryonic monocyte-derived macrophage population, whose turnover is independent of bone marrow-derived hematopoietic precursors. This last observation raised the interesting possibility that AM and PIM originate from the same lung precursor.
Assuntos
Macrófagos Alveolares/imunologia , Fagocitose , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Viremia/imunologia , Animais , Células Cultivadas , Feminino , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Cultura Primária de Células , Organismos Livres de Patógenos Específicos , Sus scrofa , Suínos , Porco Miniatura , Viremia/virologiaRESUMO
[This corrects the article on p. 641 in vol. 7, PMID: 28082980.].
RESUMO
The development of influenza A virus (IAV) vaccines, which elicits cross-strain immunity against seasonal and pandemic viruses is a major public health goal. As pigs are susceptible to human, avian, and swine-adapted IAV, they would be key targets of so called universal IAV vaccines, for reducing both the zoonotic risk and the economic burden in the swine industry. They also are relevant preclinical models. However, vaccination with conserved IAV antigens (AGs) in pigs was reported to elicit disease exacerbation. In this study, we assessed whether delivery strategies, i.e., dendritic cell (DC) targeting by the intradermal (ID) or intramuscular (IM) routes, impact on the outcome of the vaccination with three conserved IAV AGs (M2e, NP, and HA2) in pigs. The AGs were addressed to CD11c by non-covalent binding to biotinylated anti-CD11c monoclonal antibody. The CD11c-targeted AGs given by the ID route exacerbated disease. Conversely, CD11c-targeted NP injected by the IM route promoted T cell response compared to non-targeted NP. Furthermore, the conserved IAV AGs injected by the IM route, independently of DC targeting, induced both a reduction of viral shedding and a broader IgG response as compared to the ID route. Our findings highlight in a relevant animal species that the route of vaccine delivery impacts on the protection induced by conserved IAV AGs and on vaccine adverse effects. Finally, our results indicate that HA2 stands as the most promising conserved IAV AG for universal vaccine development.