Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Chemistry ; 30(3): e202303133, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823679

RESUMO

Homocubane, a highly strained cage hydrocarbon, contains two very different positions for the introduction of a nitrogen atom into the skeleton, e. g., a position 1 exchange results in a tertiary amine whereas position 9 yields a secondary amine. Herein reported is the synthesis of 9-azahomocubane along with associated structural characterization, physical property analysis and chemical reactivity. Not only is 9-azahomocubane readily synthesized, and found to be stable as predicted, the basicity of the secondary amine was observed to be significantly lower than the structurally related azabicyclo[2.2.1]heptane, although similar to 1-azahomocubane.

2.
Inorg Chem ; 63(14): 6453-6464, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526552

RESUMO

Copper-catalyzed electrochemical atom transfer radical addition (eATRA) is a new method for the creation of new C-C bonds under mild conditions. In this work, we have explored the reactivity of an analogous series of N4 macrocyclic CuII complexes as eATRA precatalysts, which are primed by reduction to their monovalent oxidation state. These complexes were fully characterized structurally, spectroscopically, and electrochemically. A spectrum of radical activation reactivity was found across the series [CuI(Me4cyclen)(NCMe)]+ (Me4cyclen = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane), [CuI(Me4cyclam)(NCMe)]+ (Me4cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [CuI(Me2py2clen)(NCMe)]+ (Me2py2clen = 3,7-dimethyl-3,7-diaza-1,5(2,6)-dipyridinacyclo-octaphane). The rate of radical production by [Cu(Me2py2clen)(NCMe)]+ was modest, but rapid radical capture to form the organocopper complex [CuI(Me2py2clen)(CH2CN)] led to a dramatic acceleration in catalysis, greater than seen in any comparable Cu complex, but this led to rapid radical self-termination instead of radical addition.

3.
J Nat Prod ; 87(5): 1471-1478, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38747559

RESUMO

A chemical investigation of Australian soil-derived bacteria Actinomadura sp. S4S-00069B08 yielded eight new benzenoid ansamycins, goondansamycins A-H. Goondansamycins feature rare 1,4-benzoxazin-3-one or o-diamino-p-benzoquinone moieties and can exist as both aglycones or 9-O-α-glycosides of either d-rhodinose or d-amicetose. Structures were solved on the basis of detailed spectroscopy, including X-ray analysis.


Assuntos
Actinomadura , Microbiologia do Solo , Austrália , Estrutura Molecular , Benzoquinonas/química , Benzoquinonas/farmacologia , Cristalografia por Raios X
4.
Mar Drugs ; 22(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921553

RESUMO

Subjecting the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339 to cultivation profiling using an innovative miniaturized 24-well plate format (MATRIX) enabled access to new examples of the rare class of 2,6-diketopiperazines, noonazines A-C (1-3), along with the known analogue coelomycin (4), as well as a new azaphilone, noonaphilone A (5). Structures were assigned to 1-5 on the basis of a detailed spectroscopic analysis, and in the case of 1-2, an X-ray crystallographic analysis. Plausible biosynthetic pathways are proposed for 1-4, involving oxidative Schiff base coupling/dimerization of a putative Phe precursor. Of note, 2 incorporates a rare meta-Tyr motif, typically only reported in a limited array of Streptomyces metabolites. Similarly, a plausible biosynthetic pathway is proposed for 5, highlighting a single point for stereo-divergence that allows for the biosynthesis of alternate antipodes, for example, the 7R noonaphilone A (5) versus the 7S deflectin 1a (6).


Assuntos
Aspergillus , Aspergillus/metabolismo , Aspergillus/química , Austrália , Dicetopiperazinas/química , Dicetopiperazinas/isolamento & purificação , Organismos Aquáticos , Vias Biossintéticas , Cristalografia por Raios X , Estrutura Molecular , Benzopiranos , Pigmentos Biológicos
5.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967365

RESUMO

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Assuntos
Cupriavidus necator , Molibdênio , Molibdênio/química , Formiato Desidrogenases/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxirredução , Formiatos
6.
Chembiochem ; 24(4): e202200619, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453606

RESUMO

1-Azasugar analogues of l-iduronic acid (l-IdoA) and d-glucuronic acid (d-GlcA) and their corresponding enantiomers have been synthesized as potential pharmacological chaperones for mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by mutations in the gene encoding α-iduronidase (IDUA). The compounds were efficiently synthesized in nine or ten steps from d- or l-arabinose, and the structures were confirmed by X-ray crystallographic analysis of key intermediates. All compounds were inactive against IDUA, although l-IdoA-configured 8 moderately inhibited ß-glucuronidase (ß-GLU). The d-GlcA-configured 9 was a potent inhibitor of ß-GLU and a moderate inhibitor of the endo-ß-glucuronidase heparanase. Co-crystallization of 9 with heparanase revealed that the endocyclic nitrogen of 9 forms close interactions with both the catalytic acid and catalytic nucleophile.


Assuntos
Iduronidase , Mucopolissacaridose I , Humanos , Iduronidase/química , Iduronidase/genética , Ácidos Urônicos , Glucuronidase/química , Mucopolissacaridose I/genética
7.
Chemistry ; 29(20): e202203072, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648073

RESUMO

In contrast to their molybdenum dependent relatives, tungsten enzymes operate at significantly lower redox potentials, and in some cases they can carry out reversible redox transformations of their substrates and products. Still, the electrochemical properties of W enzymes have received much less attention than their Mo relatives. Herein we analyse the tungsten enzyme aldehyde oxidoreductase (AOR) from the mesophilic bacterium Aromatoleum aromaticum which has been immobilised on a glassy carbon working electrode. This generates a functional system that electrochemically oxidises a wide variety of aromatic and aliphatic aldehydes in the presence of the electron transfer mediators benzyl viologen, methylene blue or dichlorophenol indophenol. Simulation of the cyclic voltammetry has enabled a thorough kinetic analysis of the system, which reveals that methylene blue acts as a two-electron acceptor. In contrast, the other two mediators act as single electron oxidants. The different electrochemical driving forces imparted by these mediators also lead to significantly different outer sphere electron transfer rates with AOR. This work shows that electrocatalytic aldehyde oxidation can be achieved at a low applied electrochemical potential leading to an extremely energy efficient catalytic process.


Assuntos
Aldeído Oxirredutases , Aldeídos , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Tungstênio , Azul de Metileno , Cinética , Oxirredução , Aldeído Desidrogenase
8.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385513

RESUMO

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Assuntos
Hidroliases , Sequência de Aminoácidos , Hidroliases/química , Sítios de Ligação , Catálise
9.
J Org Chem ; 88(18): 12867-12871, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647582

RESUMO

seco-1-Azacubane-2-carboxylic acid, an unusual and sterically constrained amino acid, was found to undergo amide bond formation at both the N- and C-termini using proline based bioactive molecule templates as a concept platform.

10.
Inorg Chem ; 62(11): 4662-4671, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36877141

RESUMO

Organocopper(II) reagents are an unexplored frontier of copper catalysis. Despite being proposed as reactive intermediates, an understanding of the stability and reactivity of the CuII-C bond has remained elusive. Two main pathways can be considered for the cleavage mode of a CuII-C bond: homolysis and heterolysis. We recently showed how organocopper(II) reagents can react with alkenes via radical addition, a homolytic pathway. In this work, the decomposition of the complex [CuIILR]+ [L = tris(2- dimethylaminoethyl)amine, Me6tren, R = NCCH2-] in the absence and presence of an initiator (RX, X = Cl, Br) was evaluated. When no initiator was present, first-order CuII-C bond homolysis occurred producing [CuIL]+ and succinonitrile, via radical termination. When an excess of the initiator was present, a subsequent formation of [CuIILX]+ via a second-order reaction was found, which results from the reaction of [CuIL]+ with RX following homolysis. However, when Brønsted acids (R'-OH: R' = H, Me, Ph, PhCO) were present, heterolytic cleavage of the CuII-C bond produced [CuIIL(OR')]+ and MeCN. Kinetic studies were undertaken to obtain the thermal (ΔH⧧, ΔS⧧) and pressure (ΔV⧧) activation parameters and deuterium kinetic isotopic effects, which provided an understanding of the strength of the CuII-C bond and the nature of the transition state for the reactions involved. These results reveal possible reaction pathways for organocopper(II) complexes relevant to their applications as catalysts in C-C bond forming reactions.

11.
Inorg Chem ; 62(38): 15575-15583, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37712595

RESUMO

The utility and scope of Cu-catalyzed halogen atom transfer chemistry have been exploited in the fields of atom transfer radical polymerization and atom transfer radical addition, where the metal plays a key role in radical formation and minimizing unwanted side reactions. We have shown that electrochemistry can be employed to modulate the reactivity of the Cu catalyst between its active (CuI) and dormant (CuII) states in a variety of ligand systems. In this work, a macrocyclic pyridinophane ligand (L1) was utilized, which can break the C-Br bond of BrCH2CN to release •CH2CN radicals when in complex with CuI. Moreover, the [CuI(L1)]+ complex can capture the •CH2CN radical to form a new species [CuII(L1)(CH2CN)]+ in situ that, on reduction, exhibits halogen atom transfer reactivity 3 orders of magnitude greater than its parent complex [CuI(L1)]+. This unprecedented rate acceleration has been identified by electrochemistry, successfully reproduced by simulation, and exploited in a Cu-catalyzed bulk electrosynthesis where [CuII(L1)(CH2CN)]+ participates as a radical donor in the atom transfer radical addition of BrCH2CN to a selection of styrenes. The formation of these turbocharged catalysts in situ during electrosynthesis offers a new approach to the Cu-catalyzed organic reaction methodology.

12.
Inorg Chem ; 62(4): 1328-1340, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36651855

RESUMO

In this work, the Na3[Ln(ODA)3]·2NaClO4·6H2O (Ln = Ce-Yb; ODA = oxydiacetate) series was analyzed with the ab initio ligand field theory (AILFT) module of the ORCA computational suite. The results were discussed within the framework of the angular overlap model (AOM) and compared to literature data. We find that the structural changes observed across the series exemplifies the effects of the lanthanide contraction also manifesting in the value of the AOM parameters. It is also shown that the complete active space self-consistent field (CASSCF) methodology is sufficient to describe the ligand field interactions in mononuclear lanthanide complexes, and the effects of dynamic correlation, through n-electron valence state perturbation theory (NEVPT2), are discussed. The calculated ligand field parameters of the present work are compared to the experimentally derived values from the literature.

13.
J Biol Chem ; 296: 100672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33887324

RESUMO

MtsZ is a molybdenum-containing methionine sulfoxide reductase that supports virulence in the human respiratory pathogen Haemophilus influenzae (Hi). HiMtsZ belongs to a group of structurally and spectroscopically uncharacterized S-/N-oxide reductases, all of which are found in bacterial pathogens. Here, we have solved the crystal structure of HiMtsZ, which reveals that the HiMtsZ substrate-binding site encompasses a previously unrecognized part that accommodates the methionine sulfoxide side chain via interaction with His182 and Arg166. Charge and amino acid composition of this side chain-binding region vary and, as indicated by electrochemical, kinetic, and docking studies, could explain the diverse substrate specificity seen in closely related enzymes of this type. The HiMtsZ Mo active site has an underlying structural flexibility, where dissociation of the central Ser187 ligand affected catalysis at low pH. Unexpectedly, the two main HiMtsZ electron paramagnetic resonance (EPR) species resembled not only a related dimethyl sulfoxide reductase but also a structurally unrelated nitrate reductase that possesses an Asp-Mo ligand. This suggests that contrary to current views, the geometry of the Mo center and its primary ligands, rather than the specific amino acid environment, is the main determinant of the EPR properties of mononuclear Mo enzymes. The flexibility in the electronic structure of the Mo centers is also apparent in two of three HiMtsZ EPR-active Mo(V) species being catalytically incompetent off-pathway forms that could not be fully oxidized.


Assuntos
Proteínas de Bactérias/química , Haemophilus influenzae/enzimologia , Metaloproteínas/química , Molibdênio/metabolismo , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cinética , Ligantes , Metaloproteínas/metabolismo , Molibdênio/química , Oxirredução , Oxirredutases/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Anal Chem ; 94(25): 9208-9215, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700342

RESUMO

Human mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) were immobilised on glassy carbon electrodes using the crosslinker glutaraldehyde. Voltammetry was performed in the presence of the artificial electron transfer mediator methyl viologen, whose redox potential lies negative of the enzymes' MoVI/V and MoV/IV redox potentials which were determined from optical spectroelectrochemical and EPR measurements. Apparent Michaelis constants obtained from catalytic limiting currents at various substrate concentrations were comparable to those previously reported in the literature from enzymatic assays. Kinetic parameters for benzamidoxime reduction were determined from cyclic voltammograms simulated using Digisim. pH dependence and stability of the enzyme electrode with time were also determined from limiting catalytic currents in saturating concentrations of benzamidoxime. The same electrode remained active after at least 9 days. Fabrication of this versatile and cost-effective biosensor is effective in screening new pharmaceutically important substrates and mARC inhibitors.


Assuntos
Técnicas Biossensoriais , Pró-Fármacos , Eletrodos , Transporte de Elétrons , Humanos , Oxirredução , Oximas
15.
Chemistry ; 28(44): e202200927, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35535733

RESUMO

There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic-resistant superbugs. Enzymes of the branched-chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti-microbial drug development. Dihydroxy-acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe-S cluster for catalytic activity and has recently also gained attention as a catalyst in cell-free enzyme cascades. Two types of Fe-S clusters have been identified in DHADs, i.e. [2Fe-2S] and [4Fe-4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000-fold increase with kcat as high as ∼6.7 s-1 ). Inductively-coupled plasma-optical emission spectroscopy (ICP-OES) measurements are consistent with the presence of [4Fe-4S] clusters in both enzymes. N-isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki =7.8 and 51.6 µM, respectively) and CjDHAD (Ki =32.9 and 35.1 µM, respectively). These compounds thus present suitable starting points for the development of novel anti-microbial chemotherapeutics.


Assuntos
Farmacorresistência Bacteriana , Hidroliases , Proteínas de Bactérias/química , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/enzimologia , Catálise , Hidroliases/química , Proteínas Ferro-Enxofre/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia
16.
Inorg Chem ; 61(1): 236-245, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910500

RESUMO

The cytochrome P450 (CYP) superfamily of heme monooxygenases is involved in a range of important chemical biotransformations across nature. Azole-containing molecules have been developed as drugs that bind to the heme center of these enzymes, inhibiting their function. The optical spectrum of CYP enzymes after the addition of these inhibitors is used to assess how the molecules bind. Here we use the bacterial CYP199A4 enzyme, from Rhodopseudomonas palustris HaA2, to compare how imidazolyl and triazolyl inhibitors bind to ferric and ferrous heme. 4-(Imidazol-1-yl)benzoic acid induced a red shift in the Soret wavelength (424 nm) in the ferric enzyme along with an increase and a decrease in the intensities of the δ and α bands, respectively. 4-(1H-1,2,4-Triazol-1-yl)benzoic acid binds to CYP199A4 with a 10-fold lower affinity and induces a smaller red shift in the Soret band. The crystal structures of CYP199A4 with these two inhibitors confirmed that these differences in the optical spectra were due to coordination of the imidazolyl ligand to the ferric Fe, but the triazolyl inhibitor interacts with, rather than displaces, the ferric aqua ligand. Additional water molecules were present in the active site of 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound CYP199A4. The space required to accommodate these additional water molecules in the active site necessitates changes in the position of the hydrophobic phenylalanine 298 residue. Upon reduction of the heme, the imidazole-based inhibitor Fe-N ligation was not retained. A 5-coordinate heme was also the predominant species in 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound ferrous CYP199A4, but there was an obvious shoulder at 447 nm indicative of some degree of Fe-N coordination. Rather than inhibit CYP199A4, 4-(imidazol-1-yl)benzoic acid was a substrate and was oxidized to generate a metabolite derived from ring opening of the imidazolyl ring: 4-[[2-(formylamino)acetyl]amino]benzoic acid.


Assuntos
Sistema Enzimático do Citocromo P-450
17.
J Nat Prod ; 85(6): 1641-1657, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35640100

RESUMO

Chemical investigation of Australian pasture plant-derived Streptomyces sp. CMB-PB041, supported by miniaturized cultivation profiling and molecular network analysis, led to the isolation and characterization of 13 new macrocyclic spirotetronates, glenthmycins A-M (1-13), with structures assigned by detailed spectroscopic analysis, chemical degradation and derivatization, and mechanistic and biosynthetic considerations. Hydrolysis of glenthmycin B (2) yielded the aglycone 14, whose structure and absolute configuration were secured by X-ray analysis, along with the unexpected amino sugar residues glenthose lactams A (15) and B (16), with Mosher analysis of 15 facilitating assignment of absolute configurations of the amino sugar. While the glenthmycins proved to be acid stable, treatment of isomeric glenthmycins (i.e., 3, 6, and 8) with base catalyzed rapid intramolecular trans-esterification to regio-isomeric mixtures (i.e., 3 + 6 + 8). Exposure of 5 to base achieved the same intramolecular trans-esterification and was instrumental in detecting and tentatively identifying two additional minor co-metabolites, glenthmycins N (19) and O (20). A structure-activity relationship analysis carried out on 1-13 and the semisynthetic analogues 14 and 21-26 revealed a promising Gram +ve antibacterial pharmacophore, effective against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), but with no detectable cytotoxicity to eukaryotic cells (i.e., fungal and human carcinoma). Of particular note, the semisynthetic analogue glenthmycin K 9-valerate (26) was unique among glenthmycins in potently inhibiting growth of the full panel of Gram +ve pathogens (IC50 0.2-1.6 µM). We conclude with an observation that any future evaluation of the antibacterial potential of glenthmycins and related macrocyclic spirotetronates may do well to include important soil-derived Gram +ve pathogens, such as Bacillus anthrax, Clostridium botulinum, and Rhodococcus equi, the causative agents of anthrax, botulism, and livestock pneumonia.


Assuntos
Antraz , Staphylococcus aureus Resistente à Meticilina , Policetídeos , Streptomyces , Amino Açúcares , Antibacterianos/química , Austrália , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/metabolismo , Policetídeos/farmacologia , Streptomyces/química
18.
J Nat Prod ; 85(2): 337-344, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35073486

RESUMO

Chemical investigations into solid phase cultivations of an Australian sheep station pasture plant derived Streptomyces sp. CMB-PB042 yielded the rare enamine naphthopyranoquinones BE-54238A (1) and BE-54238B (2), together with four new analogues, glenthenamines B-D (4-6) and F (8), and two handling artifacts, glenthenamines A (3) and E (7). Single-crystal X-ray analyses of 1 and 2 resolved configurational ambiguities in the scientific literature, while detailed spectroscopic analysis and biosynthetic considerations assigned structures inclusive of absolute configuration to 3-8. We propose a plausible sequence of biosynthetic transformations linking structural and configurational features of 1-8 and apply a novel Schiff base "fishing" approach to detect a key deoxyaminosugar precursor. These enamine naphthopyranoquinones disclose a new P-gp inhibitory pharmacophore capable of reversing doxorubicin resistance in P-gp overexpressing colon carcinoma cells.


Assuntos
Neoplasias do Colo , Streptomyces , Animais , Austrália , Estrutura Molecular , Bases de Schiff , Ovinos , Streptomyces/química
19.
Mar Drugs ; 20(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36355021

RESUMO

Analytical scale chemical/cultivation profiling prioritized the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339. Subsequent investigation permitted isolation of noonindoles A-F (5-10) and detection of eight minor analogues (i-viii) as new examples of a rare class of indole diterpene (IDT) amino acid conjugate, indicative of an acyl amino acid transferase capable of incorporating a diverse range of amino acid residues. Structures for 5-10 were assigned by detailed spectroscopic and X-ray crystallographic analysis. The metabolites 5-14 exhibited no antibacterial properties against G-ve and G+ve bacteria or the fungus Candida albicans, with the exception of 5 which exhibited moderate antifungal activity.


Assuntos
Aminoácidos , Diterpenos , Austrália , Diterpenos/farmacologia , Candida albicans , Indóis/farmacologia , Estrutura Molecular , Testes de Sensibilidade Microbiana
20.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558198

RESUMO

This study showcases the application of an integrated workflow of molecular networking chemical profiling (GNPS), together with miniaturized microbioreactor cultivation profiling (MATRIX) to successfully detect, dereplicate, prioritize, optimize the production, isolate, characterize, and identify a diverse selection of new chemically labile natural products from the Queensland sheep pasture soil-derived fungus Aspergillus sp. CMB-MRF324. More specifically, we report the new tryptamine enamino tripeptide aspergillamides E-F (7-8), dihydroquinoline-2-one aflaquinolones H-I (11-12), and prenylated phenylbutyrolactone aspulvinone Y (14), along with an array of known co-metabolites, including asterriquinones SU5228 (9) and CT5 (10), terrecyclic acid A (13), and aspulvinones N-CR (15), B (16), D (17), and H (18). Structure elucidation was achieved by a combination of detailed spectroscopic and chemical analysis, biosynthetic considerations, and in the case of 11, an X-ray crystallographic analysis.


Assuntos
Produtos Biológicos , Animais , Ovinos , Produtos Biológicos/farmacologia , Austrália , Aspergillus/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA