Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 183, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475749

RESUMO

BACKGROUND: Fusarium head blight (FHB) infection results in Fusarium damaged kernels (FDK) and deoxynivalenol (DON) contamination that are downgrading factors at the Canadian elevators. Durum wheat (Triticum turgidum L. var. durum Desf.) is particularly susceptible to FHB and most of the adapted Canadian durum wheat cultivars are susceptible to moderately susceptible to this disease. However, the durum line DT696 is less susceptible to FHB than commercially grown cultivars. Little is known about genetic variation for durum wheat ability to resist FDK infection and DON accumulation. This study was undertaken to map genetic loci conferring resistance to DON and FDK resistance using a SNP high-density genetic map of a DT707/DT696 DH population and to identify SNP markers useful in marker-assisted breeding. One hundred twenty lines were grown in corn spawn inoculated nurseries near Morden, MB in 2015, 2016 and 2017 and the harvested seeds were evaluated for DON. The genetic map of the population was used in quantitative trait locus analysis performed with MapQTL.6® software. RESULTS: Four DON accumulation resistance QTL detected in two of the three years were identified on chromosomes 1 A, 5 A (2 loci) and 7 A and two FDK resistance QTL were identified on chromosomes 5 and 7 A in single environments. Although not declared significant due to marginal LOD values, the QTL for FDK on the 5 and 7 A were showing in other years suggesting their effects were real. DT696 contributed the favourable alleles for low DON and FDK on all the chromosomes. Although no resistance loci contributed by DT707, transgressive segregant lines were identified resulting in greater resistance than DT696. Breeder-friendly KASP markers were developed for two of the DON and FDK QTL detected on chromosomes 5 and 7 A. Markers flanking each QTL were physically mapped against the durum wheat reference sequence and candidate genes which might be involved in FDK and DON resistance were identified within the QTL intervals. CONCLUSIONS: The DH lines harboring the desired resistance QTL will serve as useful resources in breeding for FDK and DON resistance in durum wheat. Furthermore, breeder-friendly KASP markers developed during this study will be useful for the selection of durum wheat varieties with low FDK and DON levels in durum wheat breeding programs.


Assuntos
Fusarium , Tricotecenos , Triticum , Triticum/genética , Melhoramento Vegetal , Canadá , Doenças das Plantas/genética , Resistência à Doença/genética
2.
Phytopathology ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013390

RESUMO

Durum wheat (T. turgidum L.) is threatened by the appearance of new virulent races of leaf rust, caused by Puccinia triticina, in recent years. This study was conducted to determine the leaf rust resistance in a modern Canadian durum cultivar Strongfield. Six populations derived from crosses of Strongfield with six tetraploid wheat lines, respectively, were tested at seedling plant stage with different P. triticina races. Two of the populations were evaluated for adult plant leaf rust infection in Canada and Mexico. A stepwise regression joint linkage QTL mapping and analysis by MapQTL were performed. Strongfield contributed the majority of QTL detected, contributing seven QTL detected in field tests, and eight QTL conditioning seedling resistance. A 1B QTL, QLr-Spa-1B.1, from Strongfield had a significant effect in both Canadian and Mexican field tests, and corresponded with Lr46/Yr29. The remaining field QTL were found in only the Canadian or the Mexican environment, not both. The QTL from Strongfield on 3A, QLr-Spa-3A, conferred seedling resistance to all races tested and had a significant effect in the field in Canada. This is the first report of the QLr-Spa-3A and Lr46/Yr29 as key components of the genetic resistance in Canadian durum wheat. KASP markers were developed to detect the QLr-Spa-3A for use in marker assisted leaf rust resistance breeding. The susceptible parental lines contributed QTL on 1A, 2B and 5B that were effective in Mexican field tests that may be good targets to integrate into modern durum varieties to improve resistance to new durum virulent races.

3.
Theor Appl Genet ; 130(12): 2617-2635, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28913655

RESUMO

KEY MESSAGE: Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.


Assuntos
Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Basidiomycota , Canadá , Mapeamento Cromossômico , Cruzamentos Genéticos , Genética Populacional , Técnicas de Genotipagem , Quênia , México , Nova Zelândia , Fenótipo , Doenças das Plantas/microbiologia
4.
Front Plant Sci ; 14: 1134132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284725

RESUMO

Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL.

5.
Front Plant Sci ; 14: 1166282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457352

RESUMO

Fusarium head blight (FHB) is a highly destructive fungal disease of wheat to which host resistance is quantitatively inherited and largely influenced by the environment. Resistance to FHB has been associated with taller height and later maturity; however, a further understanding of these relationships is needed. An association mapping panel (AMP) of 192 predominantly Canadian spring wheat was genotyped with the wheat 90K single-nucleotide polymorphism (SNP) array. The AMP was assessed for FHB incidence (INC), severity (SEV) and index (IND), days to anthesis (DTA), and plant height (PLHT) between 2015 and 2017 at three Canadian FHB-inoculated nurseries. Seven multi-environment trial (MET) datasets were deployed in a genome-wide association study (GWAS) using a single-locus mixed linear model (MLM) and a multi-locus random SNP-effect mixed linear model (mrMLM). MLM detected four quantitative trait nucleotides (QTNs) for INC on chromosomes 2D and 3D and for SEV and IND on chromosome 3B. Further, mrMLM identified 291 QTNs: 50 (INC), 72 (SEV), 90 (IND), 41 (DTA), and 38 (PLHT). At two or more environments, 17 QTNs for FHB, DTA, and PLHT were detected. Of these 17, 12 QTNs were pleiotropic for FHB traits, DTA, and PLHT on chromosomes 1A, 1D, 2D, 3B, 5A, 6B, 7A, and 7B; two QTNs for DTA were detected on chromosomes 1B and 7A; and three PLHT QTNs were located on chromosomes 4B and 6B. The 1B DTA QTN and the three pleiotropic QTNs on chromosomes 1A, 3B, and 6B are potentially identical to corresponding quantitative trait loci (QTLs) in durum wheat. Further, the 3B pleiotropic QTN for FHB INC, SEV, and IND co-locates with TraesCS3B02G024900 within the Fhb1 region on chromosome 3B and is ~3 Mb from a cloned Fhb1 candidate gene TaHRC. While the PLHT QTN on chromosome 6B is putatively novel, the 1B DTA QTN co-locates with a disease resistance protein located ~10 Mb from a Flowering Locus T1-like gene TaFT3-B1, and the 7A DTA QTN is ~5 Mb away from a maturity QTL QMat.dms-7A.3 of another study. GWAS and QTN candidate genes enabled the characterization of FHB resistance in relation to DTA and PLHT. This approach should eventually generate additional and reliable trait-specific markers for breeding selection, in addition to providing useful information for FHB trait discovery.

6.
Front Plant Sci ; 14: 1130768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021307

RESUMO

The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding.

7.
Front Plant Sci ; 12: 642955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841470

RESUMO

Grain protein concentration (GPC) is an important trait in durum cultivar development as a major determinant of the nutritional value of grain and end-use product quality. However, it is challenging to simultaneously select both GPC and grain yield (GY) due to the negative correlation between them. To characterize quantitative trait loci (QTL) for GPC and understand the genetic relationship between GPC and GY in Canadian durum wheat, we performed both traditional and conditional QTL mapping using a doubled haploid (DH) population of 162 lines derived from Pelissier × Strongfield. The population was grown in the field over 5 years and GPC was measured. QTL contributing to GPC were detected on chromosome 1B, 2B, 3A, 5B, 7A, and 7B using traditional mapping. One major QTL on 3A (QGpc.spa-3A.3) was consistently detected over 3 years accounting for 9.4-18.1% of the phenotypic variance, with the favorable allele derived from Pelissier. Another major QTL on 7A (QGpc.spa-7A) detected in 3 years explained 6.9-14.8% of the phenotypic variance, with the beneficial allele derived from Strongfield. Comparison of the QTL described here with the results previously reported led to the identification of one novel major QTL on 3A (QGpc.spa-3A.3) and five novel minor QTL on 1B, 2B and 3A. Four QTL were common between traditional and conditional mapping, with QGpc.spa-3A.3 and QGpc.spa-7A detected in multiple environments. The QTL identified by conditional mapping were independent or partially independent of GY, making them of great importance for development of high GPC and high yielding durum.

8.
Front Plant Sci ; 11: 592064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424887

RESUMO

Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.

9.
PLoS One ; 15(4): e0230855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267842

RESUMO

Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag.


Assuntos
Resistência à Doença/genética , Marcadores Genéticos/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia , Basidiomycota/fisiologia , Doenças das Plantas/imunologia , Triticum/fisiologia
10.
PLoS One ; 13(10): e0204362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307951

RESUMO

Breeding for Fusarium head blight (FHB) resistance in durum wheat is complicated by the quantitative trait expression and narrow genetic diversity of available resources. High-density mapping of the FHB resistance quantitative trait loci (QTL), evaluation of their co-localization with plant height and maturity QTL and the interaction among the identified QTL are the objectives of this study. Two doubled haploid (DH) populations, one developed from crosses between Triticum turgidum ssp. durum lines DT707 and DT696 and the other between T. turgidum ssp. durum cv. Strongfield and T. turgidum ssp. carthlicum cv. Blackbird were genotyped using the 90K Infinium iSelect chip and evaluated phenotypically at multiple field FHB nurseries over years. A moderate broad-sense heritability indicated a genotype-by-environment interaction for the expression of FHB resistance in both populations. Resistance QTL were identified for the DT707 × DT696 population on chromosomes 1B, 2B, 5A (two loci) and 7A and for the Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B with the QTL on chromosome 1A and those on chromosome 5A being more consistently expressed over environments. FHB resistance co-located with plant height and maturity QTL on chromosome 5A and with a maturity QTL on chromosome 7A for the DT707 × DT696 population. Resistance also co-located with plant height QTL on chromosomes 2A and 3A and with maturity QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Additive × additive interactions were identified, for example between the two FHB resistance QTL on chromosome 5A for the DT707 × DT696 population and the FHB resistance QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Application of the Single Nucleotide Polymorphic (SNP) markers associated with FHB resistance QTL identified in this study will accelerate combining genes from the two populations.


Assuntos
Resistência à Doença/genética , Fusarium , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Especificidade da Espécie , Triticum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA