Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125545

RESUMO

Disease caused by the Zika virus (ZIKV) is a public health emergency of international concern. Recent epidemics have emerged in different regions of the world and attest to the ability of the virus to spread wherever its vector, Aedes species mosquitoes, can be found. We have compared the transmission of ZIKV by Ae. aegypti (PAEA strain originating from Tahiti) and by a French population of Ae. albopictus to better assess their competence and the potential risk of the emergence of ZIKV in Europe. We assessed the transmission of ZIKV by Ae. albopictus in temperatures similar to those in Southern France during the summer. Our study shows that the extrinsic incubation period of Ae. aegypti for transmission was shorter than that of Ae. albopictus. Both vectors were able to transmit ZIKV from 10 to 14 days post-infection. Ae. aegypti, however, had a longer transmission period than the French population of Ae. albopictus. Although the salivary glands of both vectors are highly infected, transmission rates of ZIKV to saliva remain relatively low. These observations may suggest that the risk of emergence of ZIKV in Europe could be low.


Assuntos
Aedes/virologia , Saliva/virologia , Infecção por Zika virus/transmissão , Zika virus/patogenicidade , Animais , Europa (Continente) , França , Humanos , Carga Viral , Zika virus/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
2.
J Immunol ; 193(3): 1246-57, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24981449

RESUMO

Malarial infection is initiated when the sporozoite form of the Plasmodium parasite is inoculated into the skin by a mosquito. Sporozoites invade hepatocytes in the liver and develop into the erythrocyte-infecting form of the parasite, the cause of clinical blood infection. Protection against parasite development in the liver can be induced by injection of live attenuated parasites that do not develop in the liver and thus do not cause blood infection. Radiation-attenuated sporozoites (RAS) and genetically attenuated parasites are now considered as lead candidates for vaccination of humans against malaria. Although the skin appears as the preferable administration route, most studies in rodents, which have served as model systems, have been performed after i.v. injection of attenuated sporozoites. In this study, we analyzed the early response to Plasmodium berghei RAS or wild-type sporozoites (WTS) injected intradermally into C57BL/6 mice. We show that RAS have a similar in vivo distribution to WTS and that both induce a similar inflammatory response consisting of a biphasic recruitment of polymorphonuclear neutrophils and inflammatory monocytes in the skin injection site and proximal draining lymph node (dLN). Both WTS and RAS associate with neutrophils and resident myeloid cells in the skin and the dLN, transform inside CD11b(+) cells, and induce a Th1 cytokine profile in the dLN. WTS and RAS are also similarly capable of priming parasite-specific CD8(+) T cells. These studies delineate the early and local response to sporozoite injection into the skin, and suggest that WTS and RAS prime the host immune system in a similar fashion.


Assuntos
Malária/imunologia , Plasmodium berghei/imunologia , Pele/imunologia , Pele/parasitologia , Esporozoítos/imunologia , Esporozoítos/transplante , Animais , Anopheles/imunologia , Anopheles/parasitologia , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Linhagem Celular , Orelha , Feminino , Células Hep G2 , Interações Hospedeiro-Parasita/imunologia , Humanos , Inflamação/imunologia , Inflamação/parasitologia , Inflamação/patologia , Injeções Intradérmicas , Linfonodos/imunologia , Linfonodos/parasitologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmodium berghei/parasitologia , Pele/citologia , Esporozoítos/efeitos da radiação
3.
PLoS Negl Trop Dis ; 13(8): e0007299, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412040

RESUMO

BACKGROUND: To be transmitted to vertebrate hosts via the saliva of their vectors, arthropod-borne viruses have to cross several barriers in the mosquito body, including the midgut infection and escape barriers. Yellow fever virus (YFV) belongs to the genus Flavivirus, which includes human viruses transmitted by Aedes mosquitoes, such as dengue and Zika viruses. The live-attenuated YFV-17D vaccine has been used safely and efficiently on a large scale since the end of World War II. Early studies have shown, using viral titration from salivary glands of infected mosquitoes, that YFV-17D can infect Aedes aegypti midgut, but does not disseminate to other tissues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we re-visited this issue using a panel of techniques, such as RT-qPCR, Western blot, immunofluorescence and titration assays. We showed that YFV-17D replication was not efficient in Aedes aegypti midgut, as compared to the clinical isolate YFV-Dakar. Viruses that replicated in the midgut failed to disseminate to secondary organs. When injected into the thorax of mosquitoes, viruses succeeded in replicating into midgut-associated tissues, suggesting that, during natural infection, the block for YFV-17D replication occurs at the basal membrane of the midgut. CONCLUSIONS/SIGNIFICANCE: The two barriers associated with Ae. aegypti midgut prevent YFV-17D replication. Our study contributes to our basic understanding of vector-pathogen interactions and may also aid in the development of non-transmissible live virus vaccines.


Assuntos
Aedes/virologia , Trato Gastrointestinal/virologia , Replicação Viral/efeitos dos fármacos , Vacina contra Febre Amarela/farmacologia , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/crescimento & desenvolvimento , Animais , Linhagem Celular , Trato Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Mosquitos Vetores , Glândulas Salivares , Vacinas Atenuadas , Carga Viral , Vírus da Febre Amarela/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA