Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
2.
Environ Res ; 243: 117886, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081344

RESUMO

Water column mixing homogenizes thermal and chemical gradients which are known to define distribution of microbial communities and influence the prevailing biogeochemical processes. Little is however known about the effects of rapid water column mixing on the vertical distribution of microbial communities in stratified reservoirs. To address this knowledge gap, physicochemical properties and microbial community composition from 16 S rRNA amplicon sequencing were analyzed before and after mixing of vertically stratified water-column bioreactors. Our results showed that α-diversity of bacterial communities decreased from bottom to surface during periods of thermal stratification. After an experimental mixing event, bacterial community diversity experienced a significant decrease throughout the water column and network connectivity was disrupted, followed by slow recovery. Significant differences in composition were seen for both total (DNA) and active (RNA) bacterial communities when comparing surface and bottom layer during periods of stratification, and when comparing samples collected before mixing and after re-stratification. The dominant predicted community assembly processes for stratified conditions were deterministic while such processes were less important during recovery from episodic mixing. Water quality characteristics of stratified water were significantly correlated with bacterial community diversity and structure. Furthermore, structural equation modeling analyses showed that changes in sulfur may have the greatest direct effect on bacterial community composition. Our results imply that rapid vertical mixing caused by episodic weather extremes and hydrological operations may have a long-term effect on microbial communities and biogeochemical processes.


Assuntos
Bactérias , Microbiologia da Água , Bactérias/genética , Tempo (Meteorologia) , Temperatura , Qualidade da Água
3.
BMC Genomics ; 23(1): 690, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203131

RESUMO

BACKGROUND: Hydrocarbons (HCs) are organic compounds composed solely of carbon and hydrogen that are mainly accumulated in oil reservoirs. As the introduction of all classes of hydrocarbons including crude oil and oil products into the environment has increased significantly, oil pollution has become a global ecological problem. However, our perception of pathways for biotic degradation of major HCs and key enzymes in these bioconversion processes has mainly been based on cultured microbes and is biased by uneven taxonomic representation. Here we used Annotree to provide a gene-centric view of the aerobic degradation ability of aliphatic and aromatic HCs in 23,446 genomes from 123 bacterial and 14 archaeal phyla.  RESULTS: Apart from the widespread genetic potential for HC degradation in Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes, genomes from an additional 18 bacterial and 3 archaeal phyla also hosted key HC degrading enzymes. Among these, such degradation potential has not been previously reported for representatives in the phyla UBA8248, Tectomicrobia, SAR324, and Eremiobacterota. Genomes containing whole pathways for complete degradation of HCs were only detected in Proteobacteria and Actinobacteriota. Except for several members of Crenarchaeota, Halobacterota, and Nanoarchaeota that have tmoA, ladA, and alkB/M key genes, respectively, representatives of archaeal genomes made a small contribution to HC degradation. None of the screened archaeal genomes coded for complete HC degradation pathways studied here; however, they contribute significantly to peripheral routes of HC degradation with bacteria. CONCLUSION: Phylogeny reconstruction showed that the reservoir of key aerobic hydrocarbon-degrading enzymes in Bacteria and Archaea undergoes extensive diversification via gene duplication and horizontal gene transfer. This diversification could potentially enable microbes to rapidly adapt to novel and manufactured HCs that reach the environment.


Assuntos
Archaea , Petróleo , Bactérias , Biodegradação Ambiental , Carbono/metabolismo , Hidrocarbonetos/metabolismo , Hidrogênio/metabolismo , Petróleo/metabolismo , Filogenia
4.
Environ Microbiol ; 24(5): 2201-2209, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049133

RESUMO

In-depth knowledge about spatial and temporal variation in microbial diversity and function is needed for a better understanding of ecological and evolutionary responses to global change. In particular, the study of microbial ancient DNA preserved in sediment archives from lakes and oceans can help us to evaluate the responses of aquatic microbes in the past and make predictions about future biodiversity change in those ecosystems. Recent advances in molecular genetic methods applied to the analysis of historically deposited DNA in sediments have not only allowed the taxonomic identification of past aquatic microbial communities but also enabled tracing their evolution and adaptation to episodic disturbances and gradual environmental change. Nevertheless, some challenges remain for scientists to take full advantage of the rapidly developing field of paleo-genetics, including the limited ability to detect rare taxa and reconstruct complete genomes for evolutionary studies. Here, we provide a brief review of some of the recent advances in the field of environmental paleomicrobiology and discuss remaining challenges related to the application of molecular genetic methods to study microbial diversity, ecology, and evolution in sediment archives. We anticipate that, in the near future, environmental paleomicrobiology will shed new light on the processes of microbial genome evolution and microbial ecosystem responses to quaternary environmental changes at an unprecedented level of detail. This information can, for example, aid geological reconstructions of biogeochemical cycles and predict ecosystem responses to environmental perturbations, including in the context of human-induced global changes.


Assuntos
Ecossistema , Microbiota , Biodiversidade , DNA , Sedimentos Geológicos/microbiologia , Humanos , Lagos/microbiologia , Microbiota/genética
5.
Environ Sci Technol ; 56(18): 13119-13130, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069707

RESUMO

Neurotoxic methylmercury (MeHg) is formed by microbial methylation of inorganic divalent Hg (HgII) and constitutes severe environmental and human health risks. The methylation is enabled by hgcA and hgcB genes, but it is not known if the associated molecular-level processes are rate-limiting or enable accurate prediction of MeHg formation in nature. In this study, we investigated the relationships between hgc genes and MeHg across redox-stratified water columns in the brackish Baltic Sea. We showed, for the first time, that hgc transcript abundance and the concentration of dissolved HgII-sulfide species were strong predictors of both the HgII methylation rate and MeHg concentration, implying their roles as principal joint drivers of MeHg formation in these systems. Additionally, we characterized the metabolic capacities of hgc+ microorganisms by reconstructing their genomes from metagenomes (i.e., hgc+ MAGs), which highlighted the versatility of putative HgII methylators in the water column of the Baltic Sea. In establishing relationships between hgc transcripts and the HgII methylation rate, we advance the fundamental understanding of mechanistic principles governing MeHg formation in nature and enable refined predictions of MeHg levels in coastal seas in response to the accelerating spread of oxygen-deficient zones.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Oxigênio , Águas Salinas , Sulfetos , Água , Poluentes Químicos da Água/análise
6.
Environ Res ; 200: 111671, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273369

RESUMO

Impoundment of rivers to construct reservoirs for hydropower and irrigation greatly increase the hydrostatic pressure acting on river sediments with potential repercussions for ecosystem-level microbial activity and metabolism. Understanding the functioning and responses of key biogeochemical cycles such as that of nitrogen cycling to shifting hydrostatic pressure is needed to estimate and predict the systemic nutrient dynamics in deep-water reservoirs. We studied the functioning of bacterial communities involved in nitrogen transformation in bioreactors maintained under contrasting hydrostatic pressures (0.5 MPa-3.0 MPa) and complemented the experimental approach with a functional gene-informed biogeochemical model. The model predictions were broadly consistent with observations from the experiment, suggesting that the rates of N2O production decreased while the sediment concentration of nitrite increased significantly with increasing pressure, at least when exceeding 1.0 MPa. Changes in nitrite reduction (nirS) and aerobic ammonia oxidation (amoA) genes abundances were in accordance with the observed changes in N2O production and nitrite levels. Moreover, the model predicted that the higher pressures (P > 1.5 MPa) would intensify the inhibition of N2 production via denitrification and result in an accumulation of ammonia in the sediment along with a decrease in dissolved oxygen. The results imply that increased hydrostatic pressure caused by dam constructions may have a strong effect on microbial nitrogen conversion, and that this may result in lower nitrogen removal.


Assuntos
Desnitrificação , Sedimentos Geológicos , Ecossistema , Pressão Hidrostática , Nitrogênio
7.
Mol Ecol ; 29(23): 4605-4617, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001506

RESUMO

A prerequisite to improve the predictability of microbial community dynamics is to understand the mechanisms of microbial assembly. To study factors that contribute to microbial community assembly, we examined the temporal dynamics of genes in five aquatic metagenome time-series, originating from marine offshore or coastal sites and one lake. With this trait-based approach we expected to find gene-specific patterns of temporal allele variability that depended on the seasonal metacommunity size of carrier-taxa and the variability of the milieu and the substrates to which the resulting proteins were exposed. In more detail, we hypothesized that a larger seasonal metacommunity size would result in increased temporal variability of functional units (i.e., gene alleles), as shown previously for taxonomic units. We further hypothesized that multicopy genes would feature higher temporal variability than single-copy genes, as gene multiplication can result from high variability in substrate quality and quantity. Finally, we hypothesized that direct exposure of proteins to the extracellular environment would result in increased temporal variability of the respective gene compared to intracellular proteins that are less exposed to environmental fluctuations. The first two hypotheses were confirmed in all data sets, while significant effects of the subcellular location of gene products was only seen in three of the five time-series. The gene with the highest allele variability throughout all data sets was an iron transporter, also representing a target for phage infection. Previous work has emphasized the role of phage-prokaryote interactions as a major driver of microbial diversity. Our finding therefore points to a potentially important role of iron transporter-mediated phage infections for the assembly and maintenance of diversity in aquatic prokaryotes.


Assuntos
Bacteriófagos , Microbiota , Bacteriófagos/genética , Lagos , Metagenoma , Metagenômica
8.
Environ Sci Technol ; 54(21): 13517-13526, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33084323

RESUMO

Rice paddies are agricultural sites of special concern because the potent toxin methylmercury (MeHg), produced in rice paddy soils, accumulates in rice grains. MeHg cycling is mostly controlled by microbes but their importance in MeHg production and degradation in paddy soils and across a Hg concentration gradient remains unclear. Here we used surface and rhizosphere soil samples in a series of incubation experiments in combination with stable isotope tracers to investigate the relative importance of different microbial groups on MeHg production and degradation across a Hg contamination gradient. We showed that sulfate reduction was the main driver of MeHg formation and concentration at control sites, and that methanogenesis had an important and complex role in MeHg cycling as Hg concentrations increased. The inhibition of methanogenesis at the mining sites led to an increase in MeHg production up to 16.6-fold and a decrease in MeHg degradation by up to 77%, suggesting that methanogenesis is associated with MeHg degradation as Hg concentrations increased. This study broadens our understanding of the roles of microbes in MeHg cycling and highlights methanogenesis as a key control of MeHg concentrations in rice paddies, offering the potential for mitigation of Hg contamination and for the safe production of rice in Hg-contaminated areas.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , China , Monitoramento Ambiental , Mercúrio/análise , Mineração , Solo , Poluentes do Solo/análise
9.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242005

RESUMO

Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.IMPORTANCE Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Lagos/microbiologia , Metano/metabolismo , Compostos de Metilmercúrio/metabolismo , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Mercúrio/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
10.
Mol Ecol ; 27(21): 4322-4335, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30176079

RESUMO

Temporal dynamics of bacterioplankton are rarely investigated for multiple habitats and years within individual lakes, limiting our understanding of the variability of bacterioplankton community (BC) composition with respect to environmental factors. We assessed the BC composition of a littoral and two pelagic habitats (euphotic zone and hypolimnion) of Lake Tovel monthly from April 2014 to May 2017 by high-throughput sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The three habitats differed in temperature, light, oxygen and hydrology. In particular, the littoral was the most hydrologically unstable because it receives most of the lake inflow, the hypolimnion was the most stable because of its hydrologically sheltered position, and the pelagic euphotic habitat was intermediate. Consequently, we hypothesized different temporal patterns of BC composition for all three habitats according to their environmental differences. We applied PERMANOVA, nonmetric multidimensional scaling and source-sink analysis to characterize BC composition. Overall, BCs were different among habitats with the littoral showing the highest variability and the hypolimnion the highest stability. The BC of rainy 2014 was distinct from the BCs of other years irrespective of the habitats considered. Seasonal differences in BCs were limited to spring, probably linked to meltwater inflow and mixing. Thus, temporal effects related to year and season were linked to the hydrological gradient of habitats. We suggest that despite potential within-lake dispersal of bacterioplankton by water flow and mixing, local environmental conditions played a major role in Lake Tovel, fostering distinct BCs in the three habitats.


Assuntos
Bactérias/classificação , Ecossistema , Plâncton/classificação , Estações do Ano , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Lagos/microbiologia , RNA Ribossômico 16S/genética
11.
Environ Microbiol ; 19(12): 5078-5087, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124844

RESUMO

Aquatic environments are typically not homogenous, but characterized by changing substrate concentration gradients and nutrient patches. This heterogeneity in substrate availability creates a multitude of niches allowing bacteria with different substrate utilization strategies to hypothetically coexist even when competing for the same substrate. To study the impact of heterogeneous distribution of organic substrates on bacterioplankton, bioreactors with freshwater bacterial communities were fed artificial freshwater medium with acetate supplied either continuously or in pulses. After a month-long incubation, bacterial biomass and community-level substrate uptake rates were twice as high in the pulsed treatment compared to the continuously fed reactors even if the same total amount of acetate was supplied to both treatments. The composition of the bacterial communities emerging in the two treatments differed significantly with specific taxa overrepresented in the respective treatments. The higher estimated growth yield in cultures that received pulsed substrate inputs, imply that such conditions enable bacteria to use resources more efficiently for biomass production. This finding agrees with established concepts of basal maintenance energy requirements and high energetic costs to assimilate substrates at low concentration. Our results further imply that degradation of organic matter is influenced by temporal and spatial heterogeneity in substrate availability.


Assuntos
Acetatos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Lagos/análise , Lagos/microbiologia , Organismos Aquáticos/microbiologia , Bactérias/crescimento & desenvolvimento , Carga Bacteriana , Biomassa , Plâncton/metabolismo , Plâncton/microbiologia
12.
Environ Microbiol ; 19(6): 2453-2467, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28429510

RESUMO

The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales.


Assuntos
Acetilglucosamina/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Glutamina/metabolismo , Camada de Gelo/microbiologia , Plâncton/metabolismo , Ácido Pirúvico/metabolismo , Regiões Antárticas , Organismos Aquáticos/classificação , Organismos Aquáticos/metabolismo , Archaea/classificação , Bactérias/classificação , Carbono/metabolismo , Ecossistema , Aquecimento Global , Microbiota/fisiologia , Plâncton/classificação , Estações do Ano , Microbiologia da Água
13.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115385

RESUMO

Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes.IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms.


Assuntos
Antibiose , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Cianobactérias/fisiologia , Água Doce/microbiologia , Microbiologia da Água , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Toxinas Bacterianas/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Eutrofização , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Lagos/microbiologia , Filogenia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S , Análise de Sequência de RNA , Suécia
14.
BMC Genomics ; 17: 471, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27338614

RESUMO

BACKGROUND: Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. RESULTS: Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. CONCLUSIONS: As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units.


Assuntos
Cryptosporidium/genética , Eucariotos/genética , Genoma , Genômica , Alelos , Variação Genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Oocistos , Polimorfismo de Nucleotídeo Único
15.
Ecology ; 97(10): 2716-2728, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859115

RESUMO

Bacteria are essential for many ecosystem services but our understanding of factors controlling their functioning is incomplete. While biodiversity has been identified as an important driver of ecosystem processes in macrobiotic communities, we know much less about bacterial communities. Due to the high diversity of bacterial communities, high functional redundancy is commonly proposed as explanation for a lack of clear effects of diversity. The generality of this claim has, however, been questioned. We present the results of an outdoor dilution-to-extinction experiment with four lake bacterial communities. The consequences of changes in bacterial diversity in terms of effective number of species, phylogenetic diversity, and functional diversity were studied for (1) bacterial abundance, (2) temporal stability of abundance, (3) nitrogen concentration, and (4) multifunctionality. We observed a richness gradient ranging from 15 to 280 operational taxonomic units (OTUs). Individual relationships between diversity and functioning ranged from negative to positive depending on lake, diversity dimension, and aspect of functioning. Only between phylogenetic diversity and abundance did we find a statistically consistent positive relationship across lakes. A literature review of 24 peer-reviewed studies that used dilution-to-extinction to manipulate bacterial diversity corroborated our findings: about 25% found positive relationships. Combined, these results suggest that bacteria-driven community functioning is relatively resistant to reductions in diversity.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Bactérias , Lagos , Microbiologia da Água
16.
Appl Environ Microbiol ; 81(6): 2090-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576616

RESUMO

Although complex cooccurrence patterns have been described for microbes in natural communities, these patterns have scarcely been interpreted in the context of ecosystem functioning and stability. Here we constructed networks from species cooccurrences between pairs of microorganisms which were extracted from five individual aquatic time series, including a dystrophic and a eutrophic lake as well as an open ocean site. The resulting networks exhibited higher clustering coefficients, shorter path lengths, and higher average node degrees and levels of betweenness than those of random networks. Moreover, simulations demonstrated that taxa with a large number of cooccurrences and placement at convergence positions in the network, so-called "hubs" and "bottlenecks," confer resistance against random removal of "taxa." Accordingly, we refer to cooccurrences at convergence positions as system-relevant interdependencies, as they, like hubs and bottlenecks, determine network topology. These topology features of the cooccurrence networks point toward microbial community dynamics being resistant over time and thus could provide indicators for the state of ecosystem stability.


Assuntos
Ecossistema , Consórcios Microbianos , Interações Microbianas , Microbiologia da Água , Análise por Conglomerados , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Proc Natl Acad Sci U S A ; 109(44): 17989-94, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23027926

RESUMO

Despite the high abundance of Archaea in the global ocean, their metabolism and biogeochemical roles remain largely unresolved. We investigated the population dynamics and metabolic activity of Thaumarchaeota in polar environments, where these microorganisms are particularly abundant and exhibit seasonal growth. Thaumarchaeota were more abundant in deep Arctic and Antarctic waters and grew throughout the winter at surface and deeper Arctic halocline waters. However, in situ single-cell activity measurements revealed a low activity of this group in the uptake of both leucine and bicarbonate (<5% Thaumarchaeota cells active), which is inconsistent with known heterotrophic and autotrophic thaumarchaeal lifestyles. These results suggested the existence of alternative sources of carbon and energy. Our analysis of an environmental metagenome from the Arctic winter revealed that Thaumarchaeota had pathways for ammonia oxidation and, unexpectedly, an abundance of genes involved in urea transport and degradation. Quantitative PCR analysis confirmed that most polar Thaumarchaeota had the potential to oxidize ammonia, and a large fraction of them had urease genes, enabling the use of urea to fuel nitrification. Thaumarchaeota from Arctic deep waters had a higher abundance of urease genes than those near the surface suggesting genetic differences between closely related archaeal populations. In situ measurements of urea uptake and concentration in Arctic waters showed that small-sized prokaryotes incorporated the carbon from urea, and the availability of urea was often higher than that of ammonium. Therefore, the degradation of urea may be a relevant pathway for Thaumarchaeota and other microorganisms exposed to the low-energy conditions of dark polar waters.


Assuntos
Archaea/metabolismo , Biologia Marinha , Nitrificação , Ureia/metabolismo , Hibridização in Situ Fluorescente , Metagenômica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
18.
Environ Microbiol ; 16(9): 2682-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24118837

RESUMO

Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities.


Assuntos
Bactérias/classificação , Água Doce/microbiologia , Metagenômica , Filogenia , Salinidade , Archaea/classificação , Archaea/genética , Bactérias/genética , Mineração de Dados , Lagos/microbiologia , Redes e Vias Metabólicas , Metagenoma , Anotação de Sequência Molecular , RNA Ribossômico/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
19.
Environ Microbiol ; 16(4): 995-1004, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24034690

RESUMO

The influence of geographic distribution and type of habitat on the molecular epidemiology of ciprofloxacin resistant Escherichia coli was investigated. Ciprofloxacin resistant E. coli from wastewater, urban water with faecal contamination and faeces of gulls, pigeons and birds of prey, from Portugal, Spain and Sweden were compared based on multi-locus sequence typing (MLST) and quinolone resistance genetic determinants. Multi-locus sequence typing allowed the differentiation of E. coli lineages associated with birds of prey from those inhabiting gulls and waters. E. coli lineages of clinical relevance, such as the complex ST131, were detected in wastewater, streams and gulls in Portugal, Spain and Sweden. Quinolone resistance was due to gyrA and parC mutations, although distinct mutations were detected in birds of prey and in wastewater, streams and gulls isolates. These differences were correlated with specific MLST lineages, suggesting resistance inheritance. Among the plasmid-mediated quinolone resistance genes, only aac(6')-ib-cr and qnrS were detected in wastewater, streams and gulls isolates, but not in birds of prey. The horizontal transfer of the gene aac(6')-ib-cr could be inferred from its occurrence in different MLST lineages.


Assuntos
Charadriiformes/microbiologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Aves Predatórias/microbiologia , Animais , Antibacterianos/farmacologia , Sequência de Bases , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Portugal , Quinolonas/farmacologia , Espanha , Suécia
20.
Mol Ecol Resour ; 24(3): e13923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189173

RESUMO

The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake. We highlighted two new species within the genus Sulfurimonas that belong to a novel clade of chemotrophic sulphur oxidisers exclusive to freshwaters. We moreover conclude that this genus holds a key-role not only in limiting sulphide accumulation in the upper part of the anoxic layer but also constraining carbon, phosphate and iron cycling.


Assuntos
Bactérias , Lagos , Ferro/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA