Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomark Res ; 12(1): 3, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185642

RESUMO

Metabolic elevation in soft-tissue sarcomas (STS), as documented with 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG-PET/CT) has been linked with cell proliferation, higher grade, and lower survivals. However, the recent diagnostic innovations (CINSARC gene-expression signature and tertiary lymphoid structure [TLS]) and therapeutic innovations (immune checkpoint inhibitors [ICIs]) for STS patients underscore the need to re-assess the role of 18F-FDG-PET/CT. Thus, in this correspondence, our objective was to investigate the correlations between STS metabolism as assessed by nuclear imaging, and the immune landscape as estimated by transcriptomics analysis, immunohistochemistry panels, and TLS assessment. Based on a prospective cohort of 85 adult patients with high-grade STS recruited in the NEOSARCOMICS trial (NCT02789384), we identified 3 metabolic groups according to 18F-FDG-PET/CT metrics (metabolic-low [60%], -intermediate [15.3%] and high [24.7%]). We found that T-cells CD8 pathway was significantly enriched in metabolic-high STS. Conversely, several pathways involved in antitumor immune response, cell differentiation and cell cycle, were downregulated in extreme metabolic-low STS. Next, multiplex immunofluorescence showed that densities of CD8+, CD14+, CD45+, CD68+, and c-MAF cells were significantly higher in the metabolic-high group compared to the metabolic-low group. Lastly, no association was found between metabolic group and TLS status. Overall, these results suggest that (i) rapidly proliferating and metabolically active STS can instigate a more robust immune response, thereby attracting immune cells such as T cells and macrophages, and (ii) metabolic activity and TLS could independently influence immune responses.

2.
NPJ Precis Oncol ; 8(1): 129, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849448

RESUMO

Our objective was to capture subgroups of soft-tissue sarcoma (STS) using handcraft and deep radiomics approaches to understand their relationship with histopathology, gene-expression profiles, and metastatic relapse-free survival (MFS). We included all consecutive adults with newly diagnosed locally advanced STS (N = 225, 120 men, median age: 62 years) managed at our sarcoma reference center between 2008 and 2020, with contrast-enhanced baseline MRI. After MRI postprocessing, segmentation, and reproducibility assessment, 175 handcrafted radiomics features (h-RFs) were calculated. Convolutional autoencoder neural network (CAE) and half-supervised CAE (HSCAE) were trained in repeated cross-validation on representative contrast-enhanced slices to extract 1024 deep radiomics features (d-RFs). Gene-expression levels were calculated following RNA sequencing (RNAseq) of 110 untreated samples from the same cohort. Unsupervised classifications based on h-RFs, CAE, HSCAE, and RNAseq were built. The h-RFs, CAE, and HSCAE grouping were not associated with the transcriptomics groups but with prognostic radiological features known to correlate with lower survivals and higher grade and SARCULATOR groups (a validated prognostic clinical-histological nomogram). HSCAE and h-RF groups were also associated with MFS in multivariable Cox regressions. Combining HSCAE and transcriptomics groups significantly improved the prognostic performances compared to each group alone, according to the concordance index. The combined radiomic-transcriptomic group with worse MFS was characterized by the up-regulation of 707 genes and 292 genesets related to inflammation, hypoxia, apoptosis, and cell differentiation. Overall, subgroups of STS identified on pre-treatment MRI using handcrafted and deep radiomics were associated with meaningful clinical, histological, and radiological characteristics, and could strengthen the prognostic value of transcriptomics signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA