Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
BMC Genomics ; 23(1): 635, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071374

RESUMO

BACKGROUND: Tandem mass tag spectrometry (TMT labeling-LC-MS/MS) was utilized to examine the global proteomes of Atlantic halibut eggs at the 1-cell-stage post fertilization. Comparisons were made between eggs judged to be of good quality (GQ) versus poor quality (BQ) as evidenced by their subsequent rates of survival for 12 days. Altered abundance of selected proteins in BQ eggs was confirmed by parallel reaction monitoring spectrometry (PRM-LC-MS/MS). Correspondence of protein levels to expression of related gene transcripts was examined via qPCR. Potential mitochondrial differences between GQ and BQ eggs were assessed by transmission electron microscopy (TEM) and measurements of mitochondrial DNA (mtDNA) levels. RESULTS: A total of 115 proteins were found to be differentially abundant between GQ and BQ eggs. Frequency distributions of these proteins indicated higher protein folding activity in GQ eggs compared to higher transcription and protein degradation activities in BQ eggs. BQ eggs were also significantly enriched with proteins related to mitochondrial structure and biogenesis. Quantitative differences in abundance of several proteins with parallel differences in their transcript levels were confirmed in egg samples obtained over three consecutive reproductive seasons. The observed disparities in global proteome profiles suggest impairment of protein and energy homeostasis related to unfolded protein response and mitochondrial stress in BQ eggs. TEM revealed BQ eggs to contain significantly higher numbers of mitochondria, but differences in corresponding genomic mtDNA (mt-nd5 and mt-atp6) levels were not significant. Mitochondria from BQ eggs were significantly smaller with a more irregular shape and a higher number of cristae than those from GQ eggs. CONCLUSION: The results of this study indicate that BQ Atlantic halibut eggs are impaired at both transcription and translation levels leading to endoplasmic reticulum and mitochondrial disorders. Observation of these irregularities over three consecutive reproductive seasons in BQ eggs from females of diverse background, age and reproductive experience indicates that they are a hallmark of poor egg quality. Additional research is needed to discover when in oogenesis and under what circumstances these defects may arise. The prevalence of this suite of markers in BQ eggs of diverse vertebrate species also begs investigation.


Assuntos
Linguado , Animais , Cromatografia Líquida , DNA Mitocondrial/genética , Feminino , Linguado/genética , Homeostase , Dobramento de Proteína , Proteoma , Espectrometria de Massas em Tandem
2.
Clin Proteomics ; 19(1): 23, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790914

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune, neurodegenerative disorder with a strong genetic component that acts in a complex interaction with environmental factors for disease development. CD4+ T cells are pivotal players in MS pathogenesis, where peripherally activated T cells migrate to the central nervous system leading to demyelination and axonal degeneration. Through a proteomic approach, we aim at identifying dysregulated pathways in activated T cells from MS patients as compared to healthy controls. METHODS: CD4+ T cells were purified from peripheral blood from MS patients and healthy controls by magnetic separation. Cells were left unstimulated or stimulated in vitro through the TCR and costimulatory CD28 receptor for 24 h prior to sampling. Electrospray liquid chromatography-tandem mass spectrometry was used to measure protein abundances. RESULTS: Upon T cell activation the abundance of 1801 proteins was changed. Among these proteins, we observed an enrichment of proteins expressed by MS-susceptibility genes. When comparing protein abundances in T cell samples from healthy controls and MS patients, 18 and 33 proteins were differentially expressed in unstimulated and stimulated CD4+ T cells, respectively. Moreover, 353 and 304 proteins were identified as proteins exclusively induced upon T cell activation in healthy controls and MS patients, respectively and dysregulation of the Nur77 pathway was observed only in samples from MS patients. CONCLUSIONS: Our study highlights the importance of CD4+ T cell activation for MS, as proteins that change in abundance upon T cell activation are enriched for proteins encoded by MS susceptibility genes. The results provide evidence for proteomic disturbances in T cell activation in MS, and pinpoint to dysregulation of the Nur77 pathway, a biological pathway known to limit aberrant effector T cell responses.

3.
BMC Nephrol ; 23(1): 118, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331167

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is associated with a significant risk of progression to kidney failure. Tubular atrophy is an established important risk factor for progressive disease, but few studies have investigated tubulointerstitial molecular markers and mechanisms of progression in IgAN. METHODS: Based on data from the Norwegian Renal Registry, two groups were included: IgAN patients with (n = 9) or without (n = 18) progression to kidney failure during 10 years of follow-up. Tubulointerstitial tissue without discernible interstitial expansion or pronounced tubular alterations was microdissected, proteome was analysed using tandem mass spectrometry and relative protein abundances were compared between groups. RESULTS: Proteome analyses quantified 2562 proteins with at least 2 unique peptides. Of these, 150 proteins had significantly different abundance between progressive and non-progressive IgAN patients, 67 were more abundant and 83 less abundant. Periostin was the protein with the highest fold change between progressive and non-progressive IgAN (fold change 8.75, p < 0.05) and periostin staining was also stronger in patients with progressive vs non-progressive IgAN. Reactome pathway analyses showed that proteins related to inflammation were more abundant and proteins involved in mitochondrial translation were significantly less abundant in progressive vs non-progressive patients. CONCLUSIONS: Microdissection of tubulointerstitial tissue with only mild damage allowed for identification of proteome markers of early progressive IgAN. Periostin abundance showed promise as a novel and important risk marker of progression.


Assuntos
Glomerulonefrite por IGA , Insuficiência Renal , Biomarcadores , Progressão da Doença , Feminino , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico , Humanos , Masculino , Prognóstico , Proteoma , Proteômica , Insuficiência Renal/complicações
4.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684327

RESUMO

The use of a proper sample processing methodology for maximum proteome coverage and high-quality quantitative data is an important choice to make before initiating a liquid chromatography-mass spectrometry (LC-MS)-based proteomics study. Popular sample processing workflows for proteomics involve in-solution proteome digestion and single-pot, solid-phase-enhanced sample preparation (SP3). We tested them on both HeLa cells and human plasma samples, using lysis buffers containing SDS, or guanidinium hydrochloride. We also studied the effect of using commercially available depletion mini spin columns before SP3, to increase proteome coverage in human plasma samples. Our results show that the SP3 protocol, using either buffer, achieves the highest number of quantified proteins in both the HeLa cells and plasma samples. Moreover, the use of depletion mini spin columns before SP3 results in a two-fold increase of quantified plasma proteins. With additional fractionation, we quantified nearly 1400 proteins, and examined lower-abundance proteins involved in neurodegenerative pathways and mitochondrial metabolism. Therefore, we recommend the use of the SP3 methodology for biological sample processing, including those after depletion of high-abundance plasma proteins.


Assuntos
Proteoma , Manejo de Espécimes , Cromatografia Líquida/métodos , Células HeLa , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Manejo de Espécimes/métodos
5.
Mass Spectrom Rev ; 39(3): 292-306, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-28902424

RESUMO

Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Ferramenta de Busca/métodos , Animais , Humanos , Fluxo de Trabalho
6.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073480

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.


Assuntos
Células da Medula Óssea/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteômica , Via de Sinalização Wnt , Idoso , Células da Medula Óssea/citologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteoblastos/citologia
7.
Clin Proteomics ; 17: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963504

RESUMO

BACKGROUND: Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time. METHODS: Biomarker candidates were located in CSF-PR (proteomics.uib.no/csf-pr), and further filtered based on estimated concentration in CSF and biological function. Peptide surrogates for internal standards were selected according to relevant criteria, parallel reaction monitoring (PRM) assays created, and extensive assay quality testing performed, i.e. intra- and inter-day variation, trypsin digestion status over time, and whether the peptides were able to separate multiple sclerosis patients and controls. RESULTS: Assays were developed for 25 proteins, represented by 72 peptides selected according to relevant guidelines and available literature and tested for assay peptide suitability. Stability testing revealed 64 peptides with low intra- and inter-day variations, with 44 also being stably digested after 16 h of trypsin digestion, and 37 furthermore showing a significant difference between multiple sclerosis and controls, thereby confirming literature findings. Calibration curves and the linear area of measurement have, so far, been determined for 17 of these peptides. CONCLUSIONS: We present 37 high-quality PRM assays across 21 CSF-proteins found to be affected by multiple sclerosis, along with a recommended workflow for future development of new assays. The assays can directly be used by others, thus enabling better comparison between studies. Finally, the assays can robustly and stably monitor biological processes in multiple sclerosis patients over time, thus potentially aiding in diagnosis and prognosis, and ultimately in treatment decisions.

8.
Clin Proteomics ; 16: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080378

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune, neuroinflammatory disease, with an unclear etiology. However, T cells play a central role in the pathogenesis by crossing the blood-brain-barrier, leading to inflammation of the central nervous system and demyelination of the protective sheath surrounding the nerve fibers. MS has a complex inheritance pattern, and several studies indicate that gene interactions with environmental factors contribute to disease onset. METHODS: In the current study, we evaluated T cell dysregulation at the protein level using electrospray liquid chromatography-tandem mass spectrometry to get novel insights into immune-cell processes in MS. We have analyzed the proteomic profiles of CD4+ and CD8+ T cells purified from whole blood from 13 newly diagnosed, treatment-naive female patients with relapsing-remitting MS and 14 age- and sex-matched healthy controls. RESULTS: An overall higher protein abundance was observed in both CD4+ and CD8+ T cells from MS patients when compared to healthy controls. The differentially expressed proteins were enriched for T-cell specific activation pathways, especially CTLA4 and CD28 signaling in CD4+ T cells. When selectively analyzing proteins expressed from the genes most proximal to > 200 non-HLA MS susceptibility polymorphisms, we observed differential expression of eight proteins in T cells between MS patients and healthy controls, and there was a correlation between the genotype at three MS genetic risk loci and protein expressed from proximal genes. CONCLUSION: Our study provides evidence for proteomic differences in T cells from relapsing-remitting MS patients compared to healthy controls and also identifies dysregulation of proteins encoded from MS susceptibility genes.

10.
Mol Cell Proteomics ; 16(2): 300-309, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27890865

RESUMO

The rapidly growing number of biomedical studies supported by mass spectrometry based quantitative proteomics data has made it increasingly difficult to obtain an overview of the current status of the research field. A better way of organizing the biomedical proteomics information from these studies and making it available to the research community is therefore called for. In the presented work, we have investigated scientific publications describing the analysis of the cerebrospinal fluid proteome in relation to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Based on a detailed set of filtering criteria we extracted 85 data sets containing quantitative information for close to 2000 proteins. This information was made available in CSF-PR 2.0 (http://probe.uib.no/csf-pr-2.0), which includes novel approaches for filtering, visualizing and comparing quantitative proteomics information in an interactive and user-friendly environment. CSF-PR 2.0 will be an invaluable resource for anyone interested in quantitative proteomics on cerebrospinal fluid.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Doenças Neurodegenerativas/metabolismo , Proteômica/métodos , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Espectrometria de Massas/métodos , Navegador
11.
BMC Nephrol ; 20(1): 410, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726998

RESUMO

BACKGROUND: IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN. METHODS: In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15). RESULTS: Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not. CONCLUSION: IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/química , Glomerulonefrite por IGA , Glomérulos Renais/química , Proteômica/métodos , Adulto , Estudos de Casos e Controles , Moléculas de Adesão Celular/análise , Feminino , Membrana Basal Glomerular/química , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/fisiopatologia , Humanos , Rim/química , Glomérulos Renais/cirurgia , Microdissecção e Captura a Laser , Masculino , Espectrometria de Massas em Tandem
12.
Respir Res ; 19(1): 40, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29514648

RESUMO

BACKGROUND: Smoking represents a significant risk factor for many chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). METHODS: To identify dysregulation of specific proteins and pathways in bronchoalveolar lavage (BAL) cells associated with smoking, isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun proteomics analyses were performed on BAL cells from healthy never-smokers and smokers with normal lung function from the Karolinska COSMIC cohort. Multivariate statistical modeling, multivariate correlations with clinical data, and pathway enrichment analysis were performed. RESULTS: Smoking exerted a significant impact on the BAL cell proteome, with more than 500 proteins representing 15 molecular pathways altered due to smoking. The majority of these alterations occurred in a gender-independent manner. The phagosomal- and leukocyte trans endothelial migration (LTM) pathways significantly correlated with FEV1/FVC as well as the percentage of CD8+ T-cells and CD8+CD69+ T-cells in smokers. The correlations to clinical parameters in healthy never-smokers were minor. CONCLUSION: The significant correlations of proteins in the phagosome- and LTM pathways with activated cytotoxic T-cells (CD69+) and the level of airway obstruction (FEV1/FVC) in smokers, both hallmarks of COPD, suggests that these two pathways may play a role in the molecular events preceding the development of COPD in susceptible smokers. Both pathways were found to be further dysregulated in COPD patients from the same cohort, thereby providing further support to this hypothesis. Given that not all smokers develop COPD in spite of decades of smoking, it is also plausible that some of the molecular pathways associated with response to smoking exert protective mechanisms to smoking-related pathologies in resilient individuals. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02627872 ; Retrospectively registered on December 9, 2015.


Assuntos
Líquido da Lavagem Broncoalveolar , Proteoma/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumantes , Fumar/genética , Espirometria/tendências , Idoso , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/fisiopatologia , Fatores de Tempo
13.
Respir Res ; 19(1): 39, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29514663

RESUMO

BACKGROUND: Smoking is the main risk factor for chronic obstructive pulmonary disease (COPD). Women with COPD who smoke experienced a higher risk of hospitalization and worse decline of lung function. Yet the mechanisms of these gender-related differences in clinical presentations in COPD remain unknown. The aim of our study is to identify proteins and molecular pathways associated with COPD pathogenesis, with emphasis on elucidating molecular gender difference. METHOD: We employed shotgun isobaric tags for relative and absolute quantitation (iTRAQ) proteome analyses of bronchoalveolar lavage (BAL) cells from smokers with normal lung function (n = 25) and early stage COPD patients (n = 18). Multivariate modeling, pathway enrichment analysis, and correlation with clinical characteristics were performed to identify specific proteins and pathways of interest. RESULTS: More pronounced alterations both at the protein- and pathway- levels were observed in female COPD patients, involving dysregulation of the FcγR-mediated phagocytosis-lysosomal axis and increase in oxidative stress. Alterations in pathways of the phagocytosis-lysosomal axis associated with a female-dominated COPD phenotype correlated well with specific clinical features: FcγR-mediated phagocytosis correlated with FEV1/FVC, the lysosomal pathway correlated with CT < -950 Hounsfield Units (HU), and regulation of actin cytoskeleton correlated with FEV1 and FEV1/FVC in female COPD patients. Alterations observed in the corresponding male cohort were minor. CONCLUSION: The identified molecular pathways suggest dysregulation of several phagocytosis-related pathways in BAL cells in female COPD patients, with correlation to both the level of obstruction (FEV1/FVC) and disease severity (FEV1) as well as emphysema (CT < -950 HU) in women. TRIAL REGISTRATION: No.: NCT02627872 , retrospectively registered on December 9, 2015.


Assuntos
Perfilação da Expressão Gênica/métodos , Pulmão/imunologia , Fagócitos/imunologia , Proteômica/métodos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Idoso , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Imunidade Celular/genética , Imunidade Celular/imunologia , Pulmão/citologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Estudos Retrospectivos , Caracteres Sexuais , Transdução de Sinais/genética , Transdução de Sinais/imunologia
14.
J Proteome Res ; 16(1): 179-194, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27728768

RESUMO

In the current study, we conducted a quantitative in-depth proteome and deglycoproteome analysis of cerebrospinal fluid (CSF) from relapsing-remitting multiple sclerosis (RRMS) and neurological controls using mass spectrometry and pathway analysis. More than 2000 proteins and 1700 deglycopeptides were quantified, with 484 proteins and 180 deglycopeptides significantly changed between pools of RRMS and pools of controls. Approximately 300 of the significantly changed proteins were assigned to various biological processes including inflammation, extracellular matrix organization, cell adhesion, immune response, and neuron development. Ninety-six significantly changed deglycopeptides mapped to proteins that were not found changed in the global protein study. In addition, four mapped to the proteins oligo-myelin glycoprotein and noelin, which were found oppositely changed in the global study. Both are ligands to the nogo receptor, and the glycosylation of these proteins appears to be affected by RRMS. Our study gives the most extensive overview of the RRMS affected processes observed from the CSF proteome to date, and the list of differential proteins will have great value for selection of biomarker candidates for further verification.


Assuntos
Proteínas do Líquido Cefalorraquidiano/genética , Matriz Extracelular/genética , Esclerose Múltipla Recidivante-Remitente/genética , Glicoproteína Mielina-Oligodendrócito/genética , Proteoma/genética , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Adesão Celular , Proteínas do Líquido Cefalorraquidiano/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/imunologia , Matriz Extracelular/imunologia , Proteínas da Matriz Extracelular/líquido cefalorraquidiano , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Expressão Gênica , Glicoproteínas/líquido cefalorraquidiano , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Imunidade Inata , Inflamação , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Glicoproteína Mielina-Oligodendrócito/líquido cefalorraquidiano , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurogênese/genética , Neurogênese/imunologia , Receptor Nogo 1/genética , Receptor Nogo 1/imunologia , Receptor Nogo 1/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/imunologia , Proteoma/metabolismo
15.
Expert Rev Proteomics ; 14(8): 649-663, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28693350

RESUMO

INTRODUCTION: Mass spectrometry (MS)-based proteomics has become an indispensable tool for the characterization of the proteome and its post-translational modifications (PTM). In addition to standard protein sequence databases, proteogenomics strategies search the spectral data against the theoretical spectra obtained from customized protein sequence databases. Up to date, there are no published proteogenomics studies on acute myeloid leukemia (AML) samples. Areas covered: Proteogenomics involves the understanding of genomic and proteomic data. The intersection of both datatypes requires advanced bioinformatics skills. A standard proteogenomics workflow that could be used for the study of AML samples is described. The generation of customized protein sequence databases as well as bioinformatics tools and pipelines commonly used in proteogenomics are discussed in detail. Expert commentary: Drawing on evidence from recent cancer proteogenomics studies and taking into account the public availability of AML genomic data, the interpretation of present and future MS-based AML proteomic data using AML-specific protein sequence databases could discover new biological mechanisms and targets in AML. However, proteogenomics workflows including bioinformatics guidelines can be challenging for the wide AML research community. It is expected that further automation and simplification of the bioinformatics procedures might attract AML investigators to adopt the proteogenomics strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/genética , Proteogenômica/métodos , Biologia Computacional , Humanos , Espectrometria de Massas
16.
Clin Proteomics ; 14: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814945

RESUMO

BACKGROUND: The clinical course of IgA nephropathy (IgAN) is variable and complement activation may predict prognosis. The present study investigated whether glomerular abundance of complement proteins associates with progression to end-stage renal disease (ESRD) in patients for whom prognosis could not be predicted based on clinical variables. METHODS: Based on data from the Norwegian Kidney Biopsy Registry and the Norwegian Renal Registry, three groups were included: IgAN patients with (n = 9) or without (n = 16) progression to ESRD during 10 years, and controls (n = 15) with a normal kidney biopsy. IgAN patients had eGFR > 45 ml/min/1.73 m2 and non-nephrotic proteinuria at time of biopsy. Using stored formalin-fixed paraffin embedded kidney biopsy tissue, about 100 glomerular cross sections were microdissected for each patient. Samples were analyzed by liquid chromatography-tandem mass spectrometry and relative abundances of complement proteins were compared between groups. RESULTS: Proteomic analyses quantified 2018 proteins, of which 28 proteins belong to the complement system. As compared to IgAN patients without progressive disease, glomeruli from patients with progressive IgAN had significantly higher abundance of components of the classical and the terminal complement pathways, and inhibitory factors such as Factor H and factor H related proteins. Abundance of complement proteins classified progressors from non-progressors with an area under ROC curve of 0.91 (p = 0.001). Clinical and morphological data were similar between the two patient groups and could not predict progressive IgAN. CONCLUSIONS: In conclusion, higher glomerular abundance of complement proteins was associated with a progressive clinical course in IgAN and are candidate biomarkers to predict prognosis.

17.
Proteomics ; 16(2): 214-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449181

RESUMO

In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS-based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re-)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data.


Assuntos
Proteômica , Animais , Biologia Computacional , Bases de Dados de Proteínas , Humanos , Disseminação de Informação , Bases de Conhecimento , Anotação de Sequência Molecular , Processamento de Proteína Pós-Traducional
18.
Proteomics ; 16(7): 1154-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26841090

RESUMO

The aims of the study were to: (i) identify differentially regulated proteins in cerebrospinal fluid (CSF) between multiple sclerosis (MS) patients and non-MS controls; (ii) examine the effect of matching the CSF samples on either total protein amount or volume, and compare four protein normalization strategies for CSF protein quantification. CSF from MS patients (n = 37) and controls (n = 64), consisting of other noninflammatory neurological diseases (n = 50) and non neurological spinal anesthetic subjects (n = 14), were analyzed using label-free proteomics, quantifying almost 800 proteins. In total, 122 proteins were significantly regulated (p < 0.05), where 77 proteins had p-value <0.01 or AUC value >0.75. Hierarchical clustering indicated that there were two main groups of MS patients, those with increased levels of inflammatory response proteins and decreased levels of proteins involved in neuronal tissue development (n = 30), and those with normal protein levels for both of these protein groups (n = 7). The main subgroup of controls clustering with the MS patients showing increased inflammation and decreased neuronal tissue development were patients suffering from chronic fatigue. Our data indicate that the preferable way to quantify proteins in CSF is to first match the samples on total protein amount and then normalize the data based on the median intensities, preferably from the CNS-enriched proteins.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Esclerose Múltipla/metabolismo , Proteoma/análise , Proteômica/métodos , Proteínas do Líquido Cefalorraquidiano/química , Proteínas do Líquido Cefalorraquidiano/metabolismo , Análise por Conglomerados , Humanos , Proteoma/química , Proteoma/metabolismo , Proteômica/normas
19.
Biochim Biophys Acta ; 1854(7): 746-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25526888

RESUMO

Multiple sclerosis (MS) is an immune mediated chronic inflammatory disease of the central nervous system usually initiated during young adulthood, affecting approximately 2.5 million people worldwide. There is currently no cure for MS, but disease modifying treatment has become increasingly more effective, especially when started in the first phase of the disease. The disease course and prognosis are often unpredictable and it can be challenging to determine an early diagnosis. The detection of novel biomarkers to understand more of the disease mechanism, facilitate early diagnosis, predict disease progression, and find treatment targets would be very attractive. Over the last decade there has been an increasing effort toward finding such biomarker candidates. One promising strategy has been to use state-of-the-art quantitative proteomics approaches to compare the cerebrospinal fluid (CSF) proteome between MS and control patients or between different subgroups of MS. In this review we summarize and discuss the status of CSF proteomics in MS, including the latest findings with a focus on the last five years. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.


Assuntos
Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Proteômica/métodos , Biomarcadores/líquido cefalorraquidiano , Humanos
20.
BMC Genomics ; 17: 554, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27496535

RESUMO

BACKGROUND: Methylmecury (MeHg) is a widely distributed environmental pollutant with considerable risk to both human health and wildlife. To gain better insight into the underlying mechanisms of MeHg-mediated toxicity, we have used label-free quantitative mass spectrometry to analyze the liver proteome of Atlantic cod (Gadus morhua) exposed in vivo to MeHg (0, 0.5, 2 mg/kg body weight) for 2 weeks. RESULTS: Out of a toltal of 1143 proteins quantified, 125 proteins were differentially regulated between MeHg-treated samples and controls. Using various bioinformatics tools, we performed gene ontology, pathway and network enrichment analysis, which indicated that proteins and pathways mainly related to energy metabolism, antioxidant defense, cytoskeleton remodeling, and protein synthesis were regulated in the hepatic proteome after MeHg exposure. Comparison with previous gene expression data strengthened these results, and further supported that MeHg predominantly affects many energy metabolism pathways, presumably through its strong induction of oxidative stress. Some enzymes known to have functionally important oxidation-sensitive cysteine residues in other animals are among the differentially regulated proteins, suggesting their modulations by MeHg-induced oxidative stress. Integrated analysis of the proteomics dataset combined with previous gene expression dataset showed a more pronounced effect of MeHg on amino acid, glucose and fatty acid metabolic pathways, and suggested possible interactions of the cellular energy metabolism and antioxidant defense pathways. CONCLUSIONS: MeHg disrupts mainly redox homeostasis and energy generating metabolic pathways in cod liver. The energy pathways appear to be modulated through MeHg-induced oxidative stress, possibly mediated by oxidation sensitive enzymes.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Gadus morhua/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteoma , Proteômica , Animais , Biomarcadores , Biologia Computacional/métodos , Gadus morhua/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA