Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2206805119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095177

RESUMO

Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments.


Assuntos
Efeitos Antropogênicos , Anuros , Biodiversidade , Animais , Europa (Continente) , Dinâmica Populacional
2.
J Exp Biol ; 227(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099472

RESUMO

Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.


Assuntos
Visão de Cores , Sensibilidades de Contraste , Animais , Filogenia , Aves , Vertebrados , Mamíferos
3.
J Environ Manage ; 354: 120437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402787

RESUMO

While wind power plants are an important contribution to the production of renewable energy to limit climate change, collision mortality from turbines is a danger for birds, including many protected species. To try to mitigate collision risks, automatic detection systems (ADSs) can be deployed on wind power plants; these work by detecting incoming birds using a detection/classification process and triggering a specific reaction (scaring off the bird or shutting down the turbine). Nonetheless, bird fatalities still occur at ADS-equipped wind power plants, which raises the question of the performance of these tools. To date, the lack of a transparent, peer-reviewed experimental process to compare the performance of types of ADS has meant there is no robust protocol to assess these systems. With the aim of filling this gap, we developed two standardized protocols that provide objective and unbiased assessments of the performance of different types of ADS, based on their probability of detecting/classifying birds at risk of collision. Both protocols rely on precise 3D tracking of wild birds by human observers using a laser rangefinder, and the comparison of these tracks with those detected and recorded by an ADS. The first protocol evaluates a system's general performance, generating comparable data for all types of ADS. In this protocol, detection/classification probability is estimated conditional on several abiotic and biotic environmental factors such as bird size, distance from the target, the flight angle and azimuth of the bird, as well as weather conditions. The second protocol aims to verify that the performance of an ADS installed on a given wind power plant complies with its regulatory requirements. In this protocol, detection/classification probability is specifically estimated for a given target species at a given regulatory detection distance. This protocol also estimates the proportion of time an ADS is functional on site over a year, and the proportion of reaction orders successfully operated by wind turbines. These protocols have been field-tested and made publicly available for use by government agencies and wind power plant operators.


Assuntos
Aves , Centrais Elétricas , Animais , Mudança Climática , Probabilidade , Energia Renovável , Humanos
4.
Conserv Biol ; 37(2): e14005, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36178034

RESUMO

By rapidly modifying key habitat components, habitat restoration is at risk of producing attractive cues for animals without providing habitats of sufficient quality. As such, individual fitness components, such as reproduction, could be reduced and restored habitats could become ecological traps. This risk notably appears by using artificial constructions in restoration projects, yet few studies have evaluated their efficacy in a robust way. We investigated this by analyzing 154 islets that were created or restored to improve the conservation status of 7 colonial Laridae species in the South of France. From 2007 to 2016, we compared occupancy dynamics and breeding parameters of these species between the restored sites and 846 unmanaged nesting sites. We also explored species' preference for different nesting site characteristics and their respective effect on breeding parameters. Restored nesting sites were 2-9 times as attractive as unmanaged sites for all species except the Black-headed Gull (Chroicocephalus ridibundus). Colonization probability was up to 100 times higher in sites already used by other species the previous year and increased with distance to the shore until >0.2 when distance was over 250 m. Abandonment probability was 29-70% lower when breeding was successful the previous year in all species except the Sandwich Tern (Thalasseus sandvicensis). Productivity and breeding success probability were 2 times higher on managed sites. Distance from the shore was an important attractive characteristic of artificial nesting sites in all species. Other nesting site characteristics had species-specific effects on colonization, abandonment, and breeding success. Our results indicate that managed nesting sites are successful conservation tools for colonial Laridae in the Mediterranean and do not act as ecological traps. Our study showed that testing the ecological trap hypothesis is a robust way to evaluate the success of restoration projects of breeding habitats.


Eficiencia de los sitios de anidación creados y restaurados para la conservación de láridos coloniales en el sur de Francia Resumen Con la rápida modificación de los componentes clave de un hábitat, la restauración corre el riesgo de producir entradas atractivas para los animales sin proporcionar hábitats con la suficiente calidad. Como tal, los elementos individuales de la aptitud, como la reproducción, podrían ser reducidos y los hábitats restaurados podrían convertirse en trampas ecológicas. Aunque este riesgo aparece especialmente cuando se usan construcciones artificiales en los proyectos de restauración, son pocos los estudios que han evaluado su efectividad de manera firme. Investigamos lo anterior con el análisis de 154 islotes que fueron creados o restaurados para mejorar el estado de conservación de siete especies de láridos coloniales en el sur de Francia. Comparamos las dinámicas de ocupación y los parámetros de reproducción de estas especies entre 2007 y 2016 en los sitios restaurados y en 846 sitios de anidación no administrados. También exploramos la preferencia de las especies por diferentes características en los sitios de anidación y su respectivo efecto sobre los parámetros de reproducción. Los sitios de anidación restaurados fueron de 2 a 9 veces más atractivos para todas las especies, excepto la gaviota de cabeza negra (Croicocephalus ridibundus), que los sitios no administrados. La probabilidad de colonización fue hasta 100 veces mayor en los sitios usados por otras especies el año previo e incrementó con la distancia a la costa hasta >0.2, cuando la distancia fue mayor a los 250 metros. La probabilidad de abandono fue de 29 a 70% más baja para todas las especies, excepto el charrán de Sándwich (Thalasseus sandvicensis), cuando la reproducción fue exitosa el año anterior. La probabilidad de la productividad y el éxito de reproducción fueron dos veces mayores en los sitios administrados. La distancia a la costa fue una característica atractiva importante de los sitios artificiales de anidación para todas las especies. Otras características de los sitios de anidación tuvieron efectos específicos por especie sobre la colonización, el abandono y el éxito de la reproducción. Nuestros resultados indican que los sitios de anidación administrados son herramientas exitosas de conservación para los láridos coloniales en el Mediterráneo y no funcionan como trampas ecológicas. Nuestro estudio demuestra que analizar la hipótesis de la trampa ecológica es una manera sólida de evaluar el éxito de la restauración en los proyectos de hábitats para la reproducción.


Assuntos
Charadriiformes , Animais , Conservação dos Recursos Naturais , Ecossistema , Reprodução , França , Comportamento de Nidação
5.
J Environ Manage ; 345: 118923, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688969

RESUMO

Quantifying the demographic impact of anthropogenic fatalities on animal populations is a key component of wildlife conservation. However, such quantification remains rare in environmental impact assessments (EIA) of large-infrastructure projects, partly because of the complexity of implementing demographic models. Providing user-friendly demographic tools is thus an important step to fill this gap. We developed an application called EolPop to run demographic simulations and assess population-level impacts of fatalities. This tool, freely available online, is easy to use and requires minimal input data from the user. As an output, it provides an estimate, with associated uncertainty, of the relative deficit in population size at a given time horizon. Because this impact metric is relative to a baseline scenario without fatalities, it is robust to uncertainties. We showcase the tool using examples on two species that are affected by collisions with wind turbines: Lesser kestrel (Falco naumanni) and Eurasian skylark (Alauda arvensis). After 30 years, the kestrel's population is expected to suffer a deficit of ca. 48%. In contrast, the impact on skylarks, which are already declining in France, is estimated to be fairly low (ca. 7%). EolPop aims at providing a robust quantification of the relative impact of fatalities. This tool was originally built for windfarm EIA, with a focus on birds, but it can be used to assess the demographic consequences of any type of fatalities on any species.


Assuntos
Animais Selvagens , Aves , Animais , França , Densidade Demográfica , Incerteza
6.
J Anim Ecol ; 91(5): 933-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157311

RESUMO

In many animal species, sexually mature individuals may skip breeding opportunities despite a likely negative impact on fitness. In spatio-temporally heterogeneous environments, habitat selection theory predicts that individuals select habitats where fitness prospects are maximized. Individuals are attracted to high-quality habitat patches where they compete for high-quality breeding sites. Since failures in contests to secure a site may prevent individuals from breeding, we hypothesized that attraction to and competition for high-quality habitats could shape breeding propensity. Under this hypothesis, we predicted the two following associations between breeding propensity and two key population features. (1) When mean habitat quality in the population increases in multiple patches such that availability of high-quality sites increases across the population, the resulting decrease in competition should positively affect breeding propensity. (2) When the number of individuals increases in the population, the resulting increase in competitors should negatively affect breeding propensity (negative density dependence). Using long-term data from kittiwakes Rissa tridactyla, we checked the prerequisite of prediction (1), that availability of high-quality sites is positively associated with current mean habitat quality in the population (represented by breeding success). We then applied integrated population modelling to quantify annual fluctuations in population mean breeding success, breeding propensity and number of individuals by breeding status (pre-breeders, breeders, skippers and immigrants), and tested our predictions. Our results showed that breeding propensity acts as an important driver of population growth. As expected, breeding propensity was positively associated with preceding mean habitat quality in the population, and negatively with the number of competitors. These relationships varied depending on breeding status, which likely reflects status dependence in competitive ability. These findings highlight the importance of competition for high-quality breeding sites in shaping breeding propensity. Thereby, we draw attention towards alternative and complementary explanations to more standard considerations regarding the energetic cost of reproduction, and point to possible side effects of habitat selection behaviours on individual life histories and population dynamics.


Assuntos
Charadriiformes , Ecossistema , Animais , Dinâmica Populacional , Crescimento Demográfico , Reprodução
7.
J Environ Manage ; 317: 115180, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617857

RESUMO

European Union environmental policy has created a unique regulatory framework to favour aquatic ecosystem management and biodiversity conservation across European countries. Identifying the spatial structure of freshwater fish population dynamics is crucial to define region-specific management and conservation planning. To implement evidence-driven management and conservation decisions at a regional scale we assessed spatial heterogeneity in common freshwater fish population dynamics in France with a focus on trends in River Basin Districts (RBDs). The abundance and biomass growth rates of 18 common European freshwater fish species were estimated with state-space models on 546 sites distributed across the 5 main RBDs sampled in France between 1990 and 2011. Anguilla anguilla, Rutilus rutilus, Salmo trutta fario and Esox spp. exhibited large scale decline in abundance and/or biomass in several RBDs. The other species showed spatial heterogeneity in population growth rates. The main declines were observed in the Adour-Garonne and Loire-Bretagne RBDs, where management and conservation measures are urgently needed to halt the erosion of freshwater fish populations. In each of the 5 investigated RBDs, our results highlight areas where most of the common species we studied exhibited negative population growth rates. Freshwater fish surveys provide the fundamental information necessary to inform the European environmental policies and local environmental management needed to restore freshwater biodiversity. The next steps are to identify the main drivers of freshwater biodiversity erosion in the areas where we demonstrated major declines and to define the most cost-effective restoration measures.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Conservação dos Recursos Naturais/métodos , Peixes , Água Doce , Dinâmica Populacional
8.
Oecologia ; 197(1): 167-178, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34459984

RESUMO

Life-history theory predicts that animals should develop adaptive trade-offs between survival and reproduction to maximize their fitness. This results in a continuum of life-history strategies among species, ranging from slow to fast paces-of-life. The optimal pace-of-life has been shown to vary within environmental gradients, with a commonly observed pattern of a slow-to-fast continuum from the tropics to the poles. Within species, pace-of-life variability has however received much less attention. In this study, we investigated whether or not the pace-of-life of populations within a species follows the expected slow-fast continuum associated with latitude. We analysed the variability of life-history strategies among populations of the European roller Coracias garrulus, a long-distance migratory species, comparing breeding parameters and adult survival between populations across a latitudinal gradient. The findings showed a negative correlation between survival and clutch size in roller populations, with a slower pace-of-life in the northern populations and a faster pace-of-life in the southern populations: a reverse gradient to what might be expected from inter-specific studies. These results suggest that northern populations would benefit from measures enhancing adult survival probability, such as reduction in harvesting rates, while southern populations would respond better to actions favouring reproductive success, such as nesting site provisioning. This study highlights that life-history traits can vary substantially between populations of a single species with a large latitudinal breeding range, and pinpoint how knowledge about this variability may be key in anticipating different populations' responses to threats as well as to conservation strategies.


Assuntos
Características de História de Vida , Passeriformes , Animais , Tamanho da Ninhada , Geografia , Reprodução
9.
J Anim Ecol ; 89(6): 1350-1364, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32173904

RESUMO

Identifying the drivers of population fluctuations in spatially distinct populations remains a significant challenge for ecologists. Whereas regional climatic factors may generate population synchrony (i.e. the Moran effect), local factors including the level of density dependence may reduce the level of synchrony. Although divergences in the scaling of population synchrony and spatial environmental variation have been observed, the regulatory factors that underlie such mismatches are poorly understood. Few previous studies have investigated how density-dependent processes and population-specific responses to weather variation influence spatial synchrony at both local and regional scales. We addressed this issue in a pond-breeding amphibian, the great crested newt Triturus cristatus. We used capture-recapture data collected through long-term surveys in five T. cristatus populations in Western Europe. In all populations-and subpopulations within metapopulations-population size, annual survival and recruitment fluctuated over time. Likewise, there was considerable variation in these demographic rates between populations and within metapopulations. These fluctuations and variations appear to be context-dependent and more related to site-specific characteristics than local or regional climatic drivers. We found a low level of demographic synchrony at both local and regional levels. Weather has weak and spatially variable effects on survival, recruitment and population growth rate. In contrast, density dependence was a common phenomenon (at least for population growth) in almost all populations and subpopulations. Our findings support the idea that the Moran effect is low in species where the population dynamics more closely depends on local factors (e.g. population density and habitat characteristics) than on large-scale environmental fluctuation (e.g. regional climatic variation). Such responses may have far-reaching consequences for the long-term viability of spatially structured populations and their ability to respond to large-scale climatic anomalies.


Assuntos
Anfíbios , Crescimento Demográfico , Animais , Europa (Continente) , Densidade Demográfica , Dinâmica Populacional
10.
Conserv Biol ; 34(3): 743-753, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825105

RESUMO

Information on population sizes and trends of threatened species is essential for their conservation, but obtaining reliable estimates can be challenging. We devised a method to improve the precision of estimates of population size obtained from capture-recapture studies for species with low capture and recapture probabilities and short seasonal activity, illustrated with population data of an elusive grasshopper (Prionotropis rhodanica). We used data from 5 capture-recapture studies to identify methodological and environmental factors affecting capture and recapture probabilities and estimates of population size. In a simulation, we used the population size and capture and recapture probability estimates obtained from the field studies to identify the minimum number of sampling occasions needed to obtain unbiased and robust estimates of population size. Based on these results we optimized the capture-recapture design, implemented it in 2 additional studies, and compared their precision with those of the nonoptimized studies. Additionally, we simulated scenarios based on thresholds of population size in criteria C and D of the International Union for Conservation of Nature (IUCN) Red List to investigate whether estimates of population size for elusive species can reliably inform red-list assessments. Identifying parameters that affect capture and recapture probabilities (for the grasshopper time since emergence of first adults) and optimizing field protocols based on this information reduced study effort (-6% to -27% sampling occasions) and provided more precise estimates of population size (reduced coefficient of variation) compared with nonoptimized studies. Estimates of population size from the scenarios based on the IUCN thresholds were mostly unbiased and robust (only the combination of very small populations and little study effort produced unreliable estimates), suggesting capture-recapture can be considered reliable for informing red-list assessments. Although capture-recapture remains difficult and costly for elusive species, our optimization procedure can help determine efficient protocols to increase data quality and minimize monitoring effort.


Optimización del Monitoreo de Captura y Recaptura de Especies Esquivas Ilustrado con un Saltamontes Amenazado Resumen La información sobre los tamaños poblacionales y las tendencias de las especies amenazadas es esencial para su conservación, pero la obtención de estimaciones confiables puede ser todo un reto. Diseñamos un método para mejorar la precisión de las estimaciones del tamaño poblacional obtenidos de estudios de captura y recaptura para especies con probabilidades bajas de captura y recaptura y una corta actividad estacional y lo ilustramos con los datos poblacionales de un saltamontes esquivo (Prionotropis rhodanica). Usamos los datos de cinco estudios de captura y recaptura para identificar los factores metodológicos y ambientales que afectan a la probabilidad de captura y recaptura y a los estimados de tamaños poblacionales. En una simulación, usamos el tamaño poblacional y las estimaciones de probabilidad de captura y recaptura obtenidos en estudios de campo para identificar el número mínimo de ocasiones de muestreo necesarias para obtener estimaciones imparciales y sólidos del tamaño poblacional. Con base en estos resultados, optimizamos el diseño de la captura y recaptura, la implementamos en dos estudios adicionales y comparamos su precisión con aquella de los estudios no optimizados. Además, simulamos escenarios con base en los umbrales de tamaño poblacional localizados en los criterios C y D de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) para conocer si las estimaciones del tamaño poblacional para especies esquivas pueden informar certeramente las valoraciones de lista roja. La identificación de los parámetros que afectan las probabilidades de captura y recaptura (desde el momento de aparición de los primeros saltamontes adultos) y la optimización de los protocolos de campo con base en esta información redujeron el esfuerzo de estudio (−6% a −27% ocasiones de muestreo) y proporcionaron estimaciones más precisas del tamaño poblacional (coeficiente reducido de variación) en comparación con los estudios no optimizados. Las estimaciones del tamaño poblacional tomadas de los escenarios basados en los umbrales de la UICN fueron, en su mayoría, imparciales y sólidos (sólo la combinación de poblaciones muy pequeñas y un esfuerzo mínimo de estudio produjo estimaciones no confiables), lo que sugiere que la captura y recaptura puede considerarse como confiable para informar las valoraciones de lista roja. Aunque la captura y recaptura todavía es complicada y costosa cuando se aplica a especies esquivas, ésta puede ayudar a determinar los protocolos eficientes para incrementar la calidad de los datos y minimizar el esfuerzo de monitoreo.


Assuntos
Conservação dos Recursos Naturais , Gafanhotos , Animais , Ecossistema , Espécies em Perigo de Extinção , Densidade Demográfica
11.
Int J Biometeorol ; 64(3): 423-432, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31734817

RESUMO

In the south of France, the so-called climate hiatus from 1998 to 2013 was associated with a late winter cooling which has affected the phenology of several reptiles and amphibian species, delaying their dates of first appearances in spring. This episode has been related to a period of frequently negative values of the North Atlantic Oscillation index (NAOi). The recent increase of this index after this episode marks the end of the "hiatus" and provides an opportunity to verify the impact of the North Atlantic Oscillation (NAO) on the fauna of the North Mediterranean region. Most of the emergence dates of amphibians and reptiles in spring have rapidly advanced from 1983 to 1997 and then receded or stabilized from 1998 to 2010. They began to advance again since 2010. These phenological changes covary with the temperature of February-March in the study area, which is itself related to the variations of the NAO index. These changes confirm the influence of the NAO on the phenology of terrestrial organisms in northern Mediterranean where its influence is sometimes assumed to be attenuated.


Assuntos
Anfíbios , Répteis , Animais , Clima , Mudança Climática , França , Região do Mediterrâneo , Estações do Ano , Temperatura
12.
Ecol Appl ; 29(5): e01909, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31141249

RESUMO

Relocations are increasingly popular among wildlife managers despite often low rates of relocation success in vertebrates. In this context, understanding the influence of extrinsic (e.g., relocation design, habitat characteristics) and intrinsic factors (e.g., age and sex) on demographic parameters, such as survival, that regulate the dynamics of relocated populations is critical to improve relocation protocols and better predict relocation success. We investigated survival in naturally established and relocated populations of yellow-bellied toads (Bombina variegata), an amphibian that was nearly extinct in Belgium by the late 1980s. We quantified survival at three ontogenetic stages (juvenile, subadult, and adult) in the relocated population, the source population, and a control population. In the relocated population, we quantified survival in captive bred individuals and their locally born descendants. Then, using simulations, we examined how survival cost to relocation affects the self-sustainability of the relocated population. We showed that survival at juvenile and subadult stages was relatively similar in all populations. In contrast, relocated adult survival was lower than adult survival in the source and control populations. Despite this, offspring of relocated animals (the next generation, regardless of life stage) survived at similar rates to individuals in the source and control populations. Simulations revealed that the relocated population was self-sustaining under different scenarios and that the fate (e.g., stability or increase) of the simulated populations was highly dependent on the fecundity of relocated adults and their offspring. To summarize, our results indicate that survival in relocated individuals is lower than in non-relocated individuals but that this cost (i.e., reduced survival) disappears in the second generation. A finer understanding of how relocation affects demographic processes is an important step in improving relocation success of amphibians and other animals.


Assuntos
Anuros , Ecossistema , Adulto , Animais , Cruzamento , Demografia
13.
J Anim Ecol ; 88(1): 164-177, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280381

RESUMO

Understanding the mechanisms that regulate the dynamics of spatially structured populations (SSP) is a critical challenge for ecologists and conservation managers. Internal population processes such as births and deaths occur at a local level, while external processes such as dispersal take place at an inter-population level. At both levels, density dependence is expected to play a critical role. At a patch scale, demographic traits (e.g., survival, breeding success) and the population growth rate can be influenced by density either negatively (e.g., competition effect) or positively (e.g., Allee effects). At the scale of an SSP, although positive density-dependent dispersal has been widely reported, an increasing number of studies have highlighted negative density-dependent dispersal. While many studies have investigated the effects of density on population growth or on dispersal, few have simultaneously examined density-dependent effects at the scale of both the local population and the entire SSP. In this study, we examine how density is related to demographic processes at both the pond level (survival and population growth) and the SSP level (between-pond dispersal) in a pond-breeding amphibian, the great crested newt (Triturus cristatus). The study was based on 20 years of individual capture-recapture (CR) data (from 1996 to 2015) gathered from an SSP made up of 12 experimental ponds ("patches"). We first used a CR multievent model to estimate both survival and dispersal rates in specific ponds as a function of distance between ponds. Then, using a second CR multievent model, we examined whether survival and recapture rates were influenced by population density in a pond. Lastly, we used state-space time series models to investigate whether density affected population growth in each pond. Our results found a positive density-dependent effect on survival and a negative density-dependent effect on departure. In addition, the findings indicate that population growth was negatively related to density in all 12 ponds. These results support the hypothesis that in SSPs, density may have multiple and contrasting effects on demographic parameters and growth rates within local populations as well as on dispersal. This study underlines the need to better understand how density dependence may influence potential trade-offs between life-history strategies and life-history stages.


Assuntos
Lagoas , Crescimento Demográfico , Anfíbios , Animais , Densidade Demográfica , Dinâmica Populacional
14.
Ecol Lett ; 21(7): 1043-1054, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659122

RESUMO

Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.


Assuntos
Aves , Dieta , Animais , Ecossistema , Comportamento Predatório
15.
Mol Ecol ; 27(20): 3976-4010, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152121

RESUMO

Dispersal is a central process in ecology and evolution. At the individual level, the three stages of the dispersal process (i.e., emigration, transience and immigration) are affected by complex interactions between phenotypes and environmental factors. Condition- and context-dependent dispersal have far-reaching consequences, both for the demography and the genetic structuring of natural populations and for adaptive processes. From an applied point of view, dispersal also deeply affects the spatial dynamics of populations and their ability to respond to land-use changes, habitat degradation and climate change. For these reasons, dispersal has received considerable attention from ecologists and evolutionary biologists. Demographic and genetic methods allow quantifying non-effective (i.e., followed or not by a successful reproduction) and effective (i.e., with a successful reproduction) dispersal and to investigate how individual and environmental factors affect the different stages of the dispersal process. Over the past decade, demographic and genetic methods designed to quantify dispersal have rapidly evolved but interactions between researchers from the two fields are limited. We here review recent developments in both demographic and genetic methods to study dispersal in wild animal populations. We present their strengths and limits, as well as their applicability depending on study objectives and population characteristics. We propose a unified framework allowing researchers to combine methods and select the more suitable tools to address a broad range of important topics about the ecology and evolution of dispersal and its consequences on animal population dynamics and genetics.


Assuntos
Migração Animal/fisiologia , Ecologia/métodos , Animais , Animais Selvagens , Evolução Biológica , Dinâmica Populacional
16.
Ecology ; 99(5): 1150-1163, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460431

RESUMO

Dispersal is a key process in ecological and evolutionary dynamics. Spatiotemporal variation in habitat availability and characteristics has been suggested to be one of the main cause involved in dispersal evolution and has a strong influence on metapopulation dynamics. In recent decades, the study of dispersal has led to the development of capture-recapture (CR) models that allow movement between sites to be quantified, while handling imperfect detection. For studies involving numerous recapture sites, Lagrange et al. () proposed a multievent CR model that allows dispersal to be estimated while omitting site identity by distinguishing between individuals that stay and individuals that move. More recently, Cayuela et al. () extended this model to allow survival and dispersal probabilities to differ for the different types of habitat represented by several sites within a study area. Yet in both of these modeling systems, the state of sites is assumed to be static over time, which is not a realistic assumption in dynamic landscapes. For that purpose, we generalized the multievent CR model proposed by Cayuela et al. () to allow the estimation of dispersal, survival and recapture probabilities when a site may appear or disappear over time (MODEL 1) or when the characteristics of a site fluctuate over space and time (MODEL 2). This paper first presents these two new modeling systems, and then provides an illustration of their efficacy and usefulness by applying them to simulated CR data and data collected on two metapopulations of amphibians. MODEL 1 was tested using CR data recorded on a metapopulation of yellow-bellied toads (Bombina variegata). In this first empirical case, we examined whether the drying-out dynamics of ponds and the past dispersal status of an individual might affect dispersal behavior. Our study revealed that the probability of facultative dispersal (i.e., from a pond group that remained available/flooded) fluctuated between years and was higher in individuals that had previously dispersed. MODEL 2 was tested using CR data collected on a metapopulation of great crested newts (Triturus cristatus). In this second empirical example, we investigated whether the density of alpine newts (Ichthyosaura alpestris), a potential competitor, might affect the dispersal and survival of the crested newt. Our study revealed that the departure rate was lower in ponds with a high density of heterospecifics than in ponds with a low density of heterospecifics at both inter-annual and intra-annual scales. Moreover, annual survival was slightly higher in ponds with a high density of heterospecifics. Overall, our findings indicate that these multievent CR models provide a highly flexible means of modeling dispersal in dynamic landscapes.


Assuntos
Ecologia , Ecossistema , Animais , Anuros , Lagoas , Dinâmica Populacional
18.
Oecologia ; 186(1): 85-97, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063200

RESUMO

Sex- and age-dependence in recruitment and dispersal are often explained by costs arising from competition for holding a breeding territory over the years-a typical feature of species living in stable habitats. For instance, long-lived birds with male territoriality often exhibit large variation in recruitment age and higher dispersal in females and young individuals. As a corollary, we expected that species with ephemeral habitat suitability, and hence nomadic breeding, would show weak age- and sex-dependence in dispersal and low variation in recruitment age, because territory ownership is not maintained over the years. In addition, the higher cost of reproduction in females might not be (over)compensated for by costs of territoriality in males. Accordingly, females would recruit later than males. We explored these variations using multievent capture-recapture models over 13 years, 3479 (2392 sexed) slender-billed gulls (Chroicocephalus genei) and 45 colony sites along the French Mediterranean coast. As expected, variability in recruitment age was low with males recruiting earlier than females. Nonetheless, dispersal in and out of the study area decreased with age and was slightly higher in males than in females. Decreased dispersal with age might result from foraging benefits associated with increased spatial familiarity. Higher dispersal in males might be explained by a male-biased sex ratio or higher philopatry benefits in females (arising from their higher cost of reproduction). Sex- and age-dependent dispersal and recruitment may thus occur in the absence of year-to-year breeding territory ownership, which stresses the importance of considering other processes in shaping recruitment and dispersal patterns.


Assuntos
Aves , Reprodução , Animais , Cruzamento , Ecossistema , Feminino , Masculino , Razão de Masculinidade
19.
Ecology ; 98(10): 2684-2697, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28746975

RESUMO

Habitat selection theory predicts that natural selection should favor mechanisms allowing individuals to choose habitats associated with the highest fitness prospects. However, identifying sources of information on habitat quality that individuals use to choose their breeding habitat has proved to be difficult. It has also proven difficult to identify dispersal costs that prevent individuals from joining the highest-quality sites. A synthesis that integrates dispersal costs and habitat selection mechanisms across space has remained elusive. Because costs of dispersal are generally distance-dependent, we suggest that a habitat selection strategy of sequential proximity search (SPS) can be favored by natural selection. This strategy requires that animals make decisions at multiple scales: whether to stay or leave the previous breeding site, depending on reproductive success; then, if dispersal is chosen, use information on neighborhood habitat quality to decide whether to stay in the neighborhood or leave, expanding the search area until the nearest suitable site is chosen. SPS minimizes distance-dependent dispersal costs while maximizing benefits of gaining a better habitat. We found evidence of breeding dispersal behavior consistent with this strategy in a kittiwake population stratified into a spatial hierarchy from colonies to nest sites. We used a mixed sequential regression model to study dispersal decisions, indexed by breeding dispersal movement, of 2,558 individuals over 32 yr. Scale-dependent dispersal propensities of kittiwakes varied according to breeding status, breeding experience, sex and individual identity. We suggest that distance-dependent dispersal costs result from strong competition among kittiwakes for nest sites. Individual decisions regarding dispersal (whether to leave or not, and where to go) depend on nesting habitat quality as well as the competitive ability required to keep territory ownership in a previous site, or to acquire a new site; this ability varies according to distance between sites and individual characteristics. Additional studies are needed to establish the generality of SPS in habitat selection.


Assuntos
Charadriiformes/fisiologia , Ecossistema , Reprodução , Animais , Cruzamento
20.
Glob Chang Biol ; 23(12): 5481-5491, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28712146

RESUMO

Herps, especially amphibians, are particularly susceptible to climate change, as temperature tightly controls many parameters of their biological cycle-above all, their phenology. The timing of herps' activity or migration period-in particular the dates of their first appearance in spring and first breeding-and the shift to earlier dates in response to warming since the last quarter of the 20th century has often been described up to now as a nearly monotonic trend towards earlier phenological events. In this study, we used citizen science data opportunistically collected on reptiles and amphibians in the northern Mediterranean basin over a period of 32 years to explore temporal variations in herp phenology. For 17 common species, we measured shifts in the date of the species' first spring appearance-which may be the result of current changes in climate-and regressed the first appearance date against temperatures and precipitations. Our results confirmed the expected overall trend towards earlier first spring appearances from 1983 to 1997, and show that the first appearance date of both reptiles and amphibians fits well with the temperature in late winter. However, the trend towards earlier dates was stopped or even reversed in most species between 1998 and 2013. We interpret this reversal as a response to cooling related to the North Atlantic Oscillation (NAO) in the late winter and early spring. During the positive NAO episodes, for certain species only (mainly amphibians), the effect of a warm weather, which tends to advance the phenology, seems to be counterbalanced by the adverse effects of the relative dryness.


Assuntos
Anfíbios/fisiologia , Mudança Climática , Hibernação/fisiologia , Répteis/fisiologia , Estações do Ano , Animais , Monitoramento Ambiental , Região do Mediterrâneo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA