Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36947434

RESUMO

Switchgrass can be used as an alternative source for bioenergy production. Many breeding programs focus on the genetic improvement of switchgrass for increasing biomass yield. Quantitative trait loci (QTL) mapping can help to discover marker-trait associations and accelerate the breeding process through marker-assisted selection. To identify significant QTL, this study mapped 7 hybrid populations and one combined of 2 hybrid populations (30-96 F1s) derived from Alamo and Kanlow genotypes. The populations were evaluated for biomass yield, plant height, and crown size in a simulated-sward plot with 2 replications at 2 locations in Tennessee from 2019 to 2021. The populations showed significant genetic variation for the evaluated traits and exhibited transgressive segregation. The 17,251 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) were used to construct a linkage map using a fast algorithm for multiple outbred families. The linkage map spanned 1,941 cM with an average interval of 0.11 cM between SNPs. The QTL analysis was performed on evaluated traits for each and across environments (year and location) that identified 5 QTL for biomass yield (logarithm of the odds, LOD 3.12-4.34), 4 QTL for plant height (LOD 3.01-5.64), and 7 QTL for crown size (LOD 3.0-4.46) (P ≤ 0.05). The major QTL for biomass yield, plant height, and crown size resided on chromosomes 8N, 6N, and 8K explained phenotypic variations of 5.6, 5.1, and 6.6%, respectively. SNPs linked to QTL could be incorporated into marker-assisted breeding to maximize the selection gain in switchgrass breeding.


Assuntos
Panicum , Locos de Características Quantitativas , Humanos , Panicum/genética , Biomassa , Ligação Genética , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214899

RESUMO

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass species that is utilized as forage for livestock and biofuel feedstock. The stability of biomass yield and regrowth vigor under changing harvest frequency would help manage potential fluctuations in the feedstock market and would provide a continuous supply of quality forage for livestock. This study was conducted to (i) assess the genetic variation and (ii) identify the quantitative trait loci (QTL) associated with regrowth vigor after multiple cuttings in lowland switchgrass. A nested association mapping (NAM) population comprising 2000 pseudo F2 progenies was genotyped with single nucleotide polymorphism (SNP) markers derived from exome-capture sequencing and was evaluated for regrowth vigor in 2017 and 2018. The results showed significant variation among the NAM families in terms of regrowth vigor (p < 0.05). A total of 10 QTL were detected on 6 chromosomes: 1B, 5A, 5B, 6B, 7B, and 8A, explaining the phenotypic variation by up to 4.7%. The additive genetic effects of an individual QTL ranged from -0.13 to 0.26. No single QTL showed a markedly large effect, suggesting complex genetics underlying regrowth vigor in switchgrass. The homologs of candidate genes that play a variety of roles in developmental processes, including plant hormonal signal transduction, nucleotide biosynthesis, secondary metabolism, senescence, and responses to both biotic and abiotic stresses, were identified in the vicinity of QTL.

3.
Ambio ; 50(2): 505-518, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32886323

RESUMO

Mountain ecosystems are considered vulnerable to early impacts of climate change. Whether and how local residents of these areas perceive these changes, however, remain under-studied questions. By conducting a household survey in the Khumbu region of Nepal, this study assessed local residents' experience-based perception of changes in climate trends and patterns, perceived risk, and attitudes towards climate issues. Multivariate cluster analysis based on residents' climate change beliefs revealed three segments: "Cautious," "Disengaged," and "Alarmed." A comparison of these segments along key psychosocial constructs of Protection Motivation Theory (PMT) revealed significant inter-segment differences in residents' perception of severity, vulnerability, response efficacy, self-efficacy, and response cost associated with engaging in mitigating behavior. Results shed light on how residents of high elevation areas that are considered to be exposed to early impacts of climate change perceive the risk and intend to respond. These findings could also assist stakeholders working in other similar mountain ecosystems in understanding vulnerability and in working towards climate readiness.


Assuntos
Mudança Climática , Motivação , Altitude , Ecossistema , Nepal , Percepção
4.
Plant Direct ; 3(1): e00111, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31245753

RESUMO

Switchgrass (Panicum virgatum L.) is a native perennial grass species with great potential for bioenergy and forage. However, knowledge about its genetics and biology related to breeding is still in its infancy. Studying the diversity of switchgrass germplasm will shed light on variability, response to environmental conditions, adaptability, breeding, etc. Thirty-six switchgrass accessions/cultivars were used to study the ecotypic and genotypic effects on regrowth, heading date, and vegetative growth period. The R-360 honeycomb design was used for planting these accessions in 2007. Data on regrowth and heading dates were recorded in 2008, 2010, and 2011. Vegetative growth period was calculated by subtracting the regrowth date from the heading date. It was found that the lowland started regrowing earlier (77 ± 0.4 days of the year, DOY) than the upland ecotype (82 ± 0.3 DOY). The upland had earlier heading date (160 ± 0.4 DOY) than the lowland ecotype (173 ± 0.5 DOY). Vegetative growth period was about 18 days longer in the lowland (89 ± 0.6 days) than the upland ecotype (71 ± 0.4 days). For switchgrass (i.e., all accessions), biomass yield was related positively to growth period and heading date; however, biomass was only weakly related to regrowth. Therefore, when targeting biomass in the breeding program, growth period may be a quick and reliable reference in both ecotypes to quickly estimate biomass potential while regrowth and heading date may be better used as a parameter for accessions within an ecotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA