Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 50(9): 4988-4999, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35446425

RESUMO

Viral mRNAs that lack a 5' m7GTP cap and a 3' poly-A tail rely on structural elements in their untranslated regions (UTRs) to form unique RNA-protein complexes that regulate viral translation. Recent studies of the barley yellow dwarf virus (BYDV) have revealed eukaryotic initiation factor 3 (eIF3) plays a significant role in facilitating communication between its 5' and 3' UTRs by binding both UTRs simultaneously. This report uses in vitro translation assays, fluorescence anisotropy binding assays, and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting to identify secondary structures that are selectively interacting with eIF3. SHAPE data also show that eIF3 alters its interaction with BYDV structures when another factor crucial for BYDV translation, eIF4F, is introduced by the 3' BYDV translational enhancer (BTE). The observed BTE and eIF4F-induced shift of eIF3 position on the 5' UTR and the translational effects of altering eIF3-binding structures (SLC and SLII) support a new model for BYDV translation initiation that requires the reorientation of eIF3 on BYDV UTRs. This eIF3 function in BYDV translation initiation is both reminiscent of and distinct from eIF3-RNA interactions found in other non-canonically translating mRNAs (e.g. HCV). This characterization of a new role in translation initiation expands the known functionality of eIF3 and may be broadly applicable to other non-canonically translating mRNAs.


Assuntos
Fator de Iniciação 4F em Eucariotos , Luteovirus , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Hordeum/genética , Luteovirus/genética , Luteovirus/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química
2.
Biochemistry ; 62(11): 1767-1775, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132650

RESUMO

During cellular stress conditions, particularly those seen in multiple cancers, canonical cap-dependent translation is suppressed and a subset of cellular mRNAs (e.g., those encoding FGF-9, HIF-1α, and p53, among others) is known to translate in a cap-independent manner. Human eIF4GI specifically binds to the highly structured 5'-untranslated regions (5'UTRs) of these mRNAs to promote cap-independent translation. The thermodynamics of these protein-RNA interactions have not been explored, and such information will aid in understanding the basic interactions and in potential design of therapeutic drugs. Using fluorescence quenching-based assays and site-directed mutagenesis, we determined the thermodynamic properties of three eIF4GI constructs binding to the 5'UTRs of FGF-9, HIF-1α, and p53 mRNA. These three constructs were designed to explore the importance of the eIF4E binding domain of eIF4GI, which has been shown to be important in binding and selectivity. eIF4GI557-1599, containing the eIF4E binding domain, had higher binding enthalpy (-21 to -14 kJ mol-1 higher), suggesting increased hydrogen bonding, whereas for eIF4GI682-1599 lacking the eIF4E binding domain, binding was entropically favored (TΔS/ΔG of 46-85%), suggesting hydrophobic forces and/or less specific binding. A third construct where a cluster of positively charged amino acids was changed to neutral amino acids showed intermediate properties. Circular dichroism spectra confirmed the significant role of eIF4E binding domain in stable bond formation between eIF4GI and mRNAs via conformational changes. Together, these data contribute to a better understanding of the molecular forces involved in eIF4GI-mRNA recognition and elucidate properties important for the design of small molecules to mediate these interactions.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteína Supressora de Tumor p53 , Humanos , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Proteína Supressora de Tumor p53/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Biossíntese de Proteínas , Capuzes de RNA/metabolismo
3.
J Biol Chem ; 295(33): 11693-11706, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571876

RESUMO

During unfavorable conditions (e.g. tumor hypoxia or viral infection), canonical, cap-dependent mRNA translation is suppressed in human cells. Nonetheless, a subset of physiologically important mRNAs (e.g. hypoxia-inducible factor 1α [HIF-1α], fibroblast growth factor 9 [FGF-9], and p53) is still translated by an unknown, cap-independent mechanism. Additionally, expression levels of eukaryotic translation initiation factor 4GI (eIF4GI) and of its homolog, death-associated protein 5 (DAP5), are elevated. By examining the 5' UTRs of HIF-1α, FGF-9, and p53 mRNAs and using fluorescence anisotropy binding studies, luciferase reporter-based in vitro translation assays, and mutational analyses, we demonstrate here that eIF4GI and DAP5 specifically bind to the 5' UTRs of these cap-independently translated mRNAs. Surprisingly, we found that the eIF4E-binding domain of eIF4GI increases not only the binding affinity but also the selectivity among these mRNAs. We further demonstrate that the affinities of eIF4GI and DAP5 binding to these 5' UTRs correlate with the efficiency with which these factors drive cap-independent translation of these mRNAs. Integrating the results of our binding and translation assays, we conclude that eIF4GI or DAP5 is critical for recruitment of a specific subset of mRNAs to the ribosome, providing mechanistic insight into their cap-independent translation.


Assuntos
Regiões 5' não Traduzidas , Fator de Iniciação Eucariótico 4G/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação Eucariótico 4G/química , Humanos , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , Capuzes de RNA/metabolismo
4.
Nucleic Acids Res ; 47(12): 6225-6235, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31114905

RESUMO

Barley Yellow Dwarf Virus (BYDV) is a positive strand RNA virus that lacks the canonical 5' 7-methylguanosine cap and a 3' poly-A tail. Instead, BYDV utilizes a cruciform cap independent translation element (CITE) in its 3'UTR RNA (BYDV-like CITE or BTE) that binds eukaryotic translation initiation factor (eIF) 4F and recruits 40S ribosomal subunits in the presence of active helicase factors (eIF4A, eIF4B, eIF4F and ATP). A long-range, 5-nucleotide, base-pairing kissing loop interaction between the 3'BTE and a 5'UTR stem-loop is necessary for translation to initiate. The 40S-eIF complex does not bind to the BYDV 5'UTR, suggesting the involvement of additional factors. We identified eIF3 as a component of the 3'BTE recruited complex using affinity-tagged 3'BTE RNA pull-down assays. Fluorescence anisotropy binding and gel shift assays showed that the 3'BTE and 5'UTR RNAs can simultaneously and non-competitively bind eIF3 in the presence of active helicase factors forming a single, macromolecular complex. Further, quantitative studies showed eIF3 increased recruitment of the 40S subunit by more than 25-fold. We propose a new role for eIF3, where eIF3 bridges BYDV's UTRs, stabilizes the long-range 5'-3' interaction, and facilitates recruitment of the 40S-eIF complex to the 5'UTR, leading to translation initiation.


Assuntos
Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Fator de Iniciação 3 em Eucariotos/metabolismo , Luteovirus/genética , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Capuzes de RNA , Triticum
5.
Arch Insect Biochem Physiol ; 85(1): 13-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24338735

RESUMO

Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.


Assuntos
Mariposas/enzimologia , Peptídeo Hidrolases/metabolismo , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Animais , Ditiotreitol/farmacologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/genética
6.
Heliyon ; 7(9): e07907, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522805

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Solanaceae plants have been used as traditional medicines in Mizoram, India. This warrants the presence of therapeutic compounds and various bioactive phytochemicals in these plants, and characterizing their structures could lead to a possible focus for drug development. AIM OF THE STUDY: Solanaceae plants are incredible sources of proteins and minerals; some even have high medicinal values which has been recognized traditionally. The present study was designed to explore and document the ethnobotany, phytochemical and mineral nutrient composition, antimicrobial properties, antioxidant potential and to identify functional groups from edible species of Solanaceae from Mizoram, India. MATERIALS AND METHODS: Field surveys and samples collection was conducted from Aizawl District, Mizoram, India. All the studied samples were extracted using Soxhlet apparatus for the analysis of bioactive compounds. The total phenol, total flavonoid and total anthocyanin contents were determined using standard methods. The antioxidant activities were measured using DPPH free radical scavenging, APX, CAT and SOD activities. The proximate analyses and mineral contents were determined by standard methods. The antibacterial potential was determined using the agar well diffusion method, and the functional groups were analysed using FTIR. All the results were reported as the mean ± standard deviation. The linear regression coefficient (R2) for total flavonoid and phenolic content with antioxidant activity was analysed using Graph Pad Prism Version 5. P-value < 0.05 was considered significant. RESULTS: The phytochemical screenings showed the presence of alkaloids, tannins, flavonoids, terpenoids and saponins in all the samples. The highest total phenolic content was found in Solanum anguivi Lam. (29.51 mg GAE/g), and Capsicum annuum L. contained the highest total flavonoids (35.15 ± 0.03 mg/g). Proteins and carbohydrates contents were found to be the highest in Solanum melongena L. (28.49 mg/g) and Physalis angulata L. (35.64 mg/g) respectively. Elemental analysis showed the presence of Calcium (Ca), Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Potassium (K), Magnesium (Mg) and Sodium (Na) in high proportion in all the studied samples. All the plant extracts showed effective antibacterial activities against Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. The Fourier Transformed Infra-Red Spectroscopy (FTIR) spectra revealed multiple functional groups in these plants species which could be used to identify bioactive compounds that can be subsequently utilized as herbal remedies for various ailments. CONCLUSION: Our findings suggest that a considerable amount of nutrients, biologically active and therapeutic compounds are present in the studied samples and these plants could be potential sources for new phyto-pharmaceutical and nutraceutical preparations.

7.
PLoS One ; 16(1): e0245649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471847

RESUMO

Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.


Assuntos
Comportamento Alimentar , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/biossíntese , Intestinos/enzimologia , Lepidópteros/enzimologia , Serina Proteases/biossíntese , Animais , Proteínas de Insetos/genética , Larva/enzimologia , Larva/genética , Lepidópteros/genética , Serina Proteases/genética
8.
Front Physiol ; 6: 95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873901

RESUMO

Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA