Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 432, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815468

RESUMO

BACKGROUND: The major clinical manifestations of Entamoeba histolytica infection include amebic colitis and liver abscess. However the majority of infections remain asymptomatic. Earlier reports have shown that some E. histolytica isolates are more virulent than others, suggesting that virulence may be linked to genotype. Here we have looked at the genomic distribution of the retrotransposable short interspersed nuclear elements EhSINE1 and EhSINE2. Due to their mobile nature, some EhSINE copies may occupy different genomic locations among isolates of E. histolytica possibly affecting adjacent gene expression; this variability in location can be exploited to differentiate strains. RESULTS: We have looked for EhSINE1- and EhSINE2-occupied loci in the genome sequence of Entamoeba histolytica HM-1:IMSS and searched for homologous loci in other strains to determine the insertion status of these elements. A total of 393 EhSINE1 and 119 EhSINE2 loci were analyzed in the available sequenced strains (Rahman, DS4-868, HM1:CA, KU48, KU50, KU27 and MS96-3382. Seventeen loci (13 EhSINE1 and 4 EhSINE2) were identified where a EhSINE1/EhSINE2 sequence was missing from the corresponding locus of other strains. Most of these loci were unoccupied in more than one strain. Some of the loci were analyzed experimentally for SINE occupancy using DNA from strain Rahman. These data helped to correctly assemble the nucleotide sequence at three loci in Rahman. SINE occupancy was also checked at these three loci in 7 other axenically cultivated E. histolytica strains and 16 clinical isolates. Each locus gave a single, specific amplicon with the primer sets used, making this a suitable method for strain typing. Based on presence/absence of SINE and amplification with locus-specific primers, the 23 strains could be divided into eleven genotypes. The results obtained by our method correlated with the data from other typing methods. We also report a bioinformatic analysis of EhSINE2 copies. CONCLUSIONS: Our results reveal several loci with extensive polymorphism of SINE occupancy among different strains of E. histolytica and prove the principle that the genomic distribution of SINEs is a valid method for typing of E. histolytica strains.


Assuntos
Entamoeba histolytica/genética , Genômica , Técnicas de Genotipagem , Retroelementos/genética , Sequência de Bases , Primers do DNA/genética , Loci Gênicos/genética , Dados de Sequência Molecular , Polimorfismo Genético/genética , Análise de Sequência , Especificidade da Espécie
2.
Biochem Biophys Res Commun ; 439(2): 209-14, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23994136

RESUMO

Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.


Assuntos
Apoptose , Nucléolo Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Células HEK293 , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/análise , Proteína SUMO-1/metabolismo
3.
Methods Mol Biol ; 2677: 99-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464237

RESUMO

CRISPR-Cas9 genome editing technology can be used to manipulate the genome of Drosophila melanogaster. The ability to delete genes, make specific mutations, add tags, or make other genetic manipulations is useful for studying germline stem cell biology. In this chapter, we will describe a method to use CRISPR-Cas9 genome editing technology to make knock-out and knock-in flies. We will cover everything from guideRNA (gRNA) and donor plasmid design and cloning to screening for positive edits.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Sistemas CRISPR-Cas , Células Germinativas , Células-Tronco
4.
Dev Cell ; 52(1): 38-52.e10, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31839537

RESUMO

The propagation of species depends on the ability of germ cells to protect their genome from numerous exogenous and endogenous threats. While these cells employ ubiquitous repair pathways, specialized mechanisms that ensure high-fidelity replication, chromosome segregation, and repair of germ cell genomes remain incompletely understood. We identified Germ Cell Nuclear Acidic Peptidase (GCNA) as a conserved regulator of genome stability in flies, worms, zebrafish, and human germ cell tumors. GCNA contains an acidic intrinsically disordered region (IDR) and a protease-like SprT domain. In addition to chromosomal instability and replication stress, Gcna mutants accumulate DNA-protein crosslinks (DPCs). GCNA acts in parallel with the SprT domain protein Spartan. Structural analysis reveals that while the SprT domain is needed to limit DNA damage, the IDR imparts significant function. This work shows that GCNA protects germ cells from various sources of damage, providing insights into conserved mechanisms that promote genome integrity across generations.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , Fertilidade , Instabilidade Genômica , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Caenorhabditis elegans , Variações do Número de Cópias de DNA , Drosophila melanogaster , Feminino , Genoma , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , Domínios Proteicos , Especificidade da Espécie , Peixe-Zebra
5.
Mol Cell Biol ; 38(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224518

RESUMO

Deficiency of huntingtin-interacting protein 1 (Hip1) results in degenerative phenotypes. Here we generated a Hip1 deficiency allele where a floxed transcriptional stop cassette and a human HIP1 cDNA were knocked into intron 1 of the mouse Hip1 locus. CMV-Cre-mediated germ line excision of the stop cassette resulted in expression of HIP1 and rescue of the Hip1 knockout phenotype. Mx1-Cre-mediated excision led to HIP1 expression in spleen, kidney and liver, and also rescued the phenotype. In contrast, hGFAP-Cre-mediated, brain-specific HIP1 expression did not rescue the phenotype. Metabolomics and microarrays of several Hip1 knockout tissues identified low phosphocholine (PC) levels and low glycerophosphodiester phosphodiesterase domain containing 3 (Gdpd3) gene expression. Since Gdpd3 has lysophospholipase D activity that results in the formation of choline, a precursor of PC, Gdpd3 downregulation could lead to the low PC levels. To test whether Gdpd3 contributes to the Hip1 deficiency phenotype, we generated Gdpd3 knockout mice. Double knockout of Gdpd3 and Hip1 worsened the Hip1 phenotype. This suggests that Gdpd3 compensates for Hip1 loss. More-detailed knowledge of how Hip1 deficiency leads to low PC will improve our understanding of HIP1 in choline metabolism in normal and disease states.


Assuntos
Proteínas de Ligação a DNA/deficiência , Endocitose/genética , Diester Fosfórico Hidrolases/genética , Fosforilcolina/metabolismo , Animais , DNA Complementar/genética , Regulação para Baixo/genética , Expressão Gênica/genética , Humanos , Íntrons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
6.
Dev Cell ; 36(5): 562-71, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954550

RESUMO

RNA-binding Fox (Rbfox) proteins have well-established roles in regulating alternative splicing, but specific Rbfox isoforms lack nuclear localization signals and accumulate in the cytoplasm. The potential splicing-independent functions of these proteins remain unknown. Here we demonstrate that cytoplasmic Drosophila Rbfox1 regulates germ cell development and represses the translation of mRNAs containing (U)GCAUG elements within their 3'UTRs. During germline cyst differentiation, Rbfox1 targets pumilio mRNA for destabilization and translational silencing, thereby promoting germ cell development. Mis-expression of pumilio results in the formation of germline tumors, which contain cysts that break down and dedifferentiate back to single, mitotically active cells. Together, these results reveal that cytoplasmic Rbfox family members regulate the translation of specific target mRNAs. In the Drosophila ovary, this activity provides a genetic barrier that prevents germ cells from reverting back to an earlier developmental state. The finding that Rbfox proteins regulate mRNA translation has implications for Rbfox-related diseases.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/citologia , Ovário/citologia , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Citoplasma/metabolismo , Drosophila melanogaster/genética , Feminino , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA