Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 606(7915): 706-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732759

RESUMO

To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.

2.
J Am Chem Soc ; 146(20): 14267-14277, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717595

RESUMO

Converting CO2 to synthetic hydrocarbon fuels is of increasing interest. In light of progress in electrified CO2 to ethylene, we explored routes to dimerize to 1-butene, an olefin that can serve as a building block to ethylene longer-chain alkanes. With goal of selective and active dimerization, we investigate a series of metal-organic frameworks having bimetallic catalytic sites. We find that the tunable pore structure enables optimization of selectivity and that periodic pore channels enhance activity. In a tandem system for the conversion of CO2 to 1-C4H8, wherein the outlet cathodic gas from a CO2-to-C2H4 electrolyzer is fed directly (via a dehumidification stage) into the C2H4 dimerizer, we study the highest-performing MOF found herein: M' = Ru and M″ = Ni in the bimetallic two-dimensional M'2(OAc)4M″(CN)4 MOF. We report a 1-C4H8 production rate of 1.3 mol gcat-1 h-1 and a C2H4 conversion of 97%. From these experimental data, we project an estimated cradle-to-gate carbon intensity of -2.1 kg-CO2e/kg-1-C4H8 when CO2 is supplied from direct air capture and when the required energy is supplied by electricity having the carbon intensity of wind.

3.
Angew Chem Int Ed Engl ; 63(26): e202318844, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38785268

RESUMO

The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.

4.
Angew Chem Int Ed Engl ; 62(46): e202311555, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37747113

RESUMO

Porous molecular sorbents have excellent selectivity towards hydrocarbon separation with energy saving techniques. However, to realize commercialization, molecular sieving processes should be faster and more efficient compared to extended frameworks. In this work, we show that utilizing fluorine to improve the hydrophobic profile of leaning pillararenes affords a substantial kinetic selective adsorption of benzene over cyclohexane (20 : 1 for benzene). The crystal structure shows a porous macrocycle that acts as a perfect match for benzene in both the intrinsic and extrinsic cavities with strong interactions in the solid state. The fluorinated leaning pillararene surpasses all reported organic molecular sieves and is comparable to the extended metal-organic frameworks that were previously employed for this separation such as UIO-66. Most importantly, this sieving system outperformed the well-known zeolitic imidazolate frameworks under low pressure, which opens the door to new generations of molecular sieves that can compete with extended frameworks for more sustainable hydrocarbon separation.

5.
Inorg Chem ; 61(28): 10661-10666, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35771949

RESUMO

Edge-transitive nets are regarded as appropriate blueprints for the practice of reticular chemistry, and in particular, for the rational design and synthesis of functional metal-organic frameworks (MOFs). Among edge-transitive nets, type I edge-transitive nets have unique coordination figures, offering only one edge-transitive target for their associated expressed net-cBUs. Here, we report the reticulation of the binodal edge-transitive (6, 6)-c nia net in MOF chemistry, namely, the deliberate assembly of trinuclear aluminum clusters and 6-connected hexacarboxylate ligands into highly porous nia-MOFs. Further studies reveal that Al-nia-MOF-1 shows promising attributes as a storage media for oxygen (O2) at high-pressure adsorption studies.

6.
J Am Chem Soc ; 143(11): 4090-4094, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33691071

RESUMO

The separation of styrene (ST) and ethylbenzene (EB) mixtures is of great importance in the petrochemical and plastics industries. Current technology employs multiple cycles of energy-intensive distillation due to the very close boiling points of ST and EB. Here, we show that the molecular sieving properties of easily scalable and stable trianglimine crystals offer ultrahigh selectivity (99%) for styrene separation. The unique molecular sieving properties of trianglimine crystals are corroborated by DFT calculations, suggesting that the incorporation of the nonplanar EB requires a significant deformation of the macrocyclic cavity whereas the planar ST can be easily accommodated in the cavity.

7.
J Am Chem Soc ; 142(49): 20547-20553, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33211955

RESUMO

Herein we report novel mesoporous zirconium-based metal-organic frameworks (MOFs) with zeolitic sodalite (sod) topology. Zr-sod-ZMOF-1 and -2 are constructed based on a novel cantellation design strategy. Distinctly, organic linkers are judiciously designed in order to promote the deployment of the 12-coordinated Zr hexanuclear molecular building block (MBB) as a tetrahedral secondary building unit, a prerequisite for zeolite-like nets. The resultant Zr-sod-ZMOFs exhibit mesopores with a diameter up to ≈43 Å, while the pore volume of 1.98 cm3·g-1 measured for Zr-sod-ZMOF-1 is the highest reported experimental value for zeolite-like MOFs based on MBBs as tetrahedral nodes.

8.
Phys Chem Chem Phys ; 22(40): 23073-23082, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047772

RESUMO

We apply molecular simulations to screen a database of reported metal-organic framework structures from the computation-ready, experimental (CoRE) MOF database to identify materials potentially capable of separating propane and propene by diffusion. We report a screening workflow that uses descriptor analysis, conventional molecular dynamics (MD), and Nudged Elastic Band (NEB) energy barrier calculations at both classical force field and Density Functional Theory (DFT) levels. For the first time, the effects of framework flexibility on guest transport properties were fully considered in a screening process and led to the identification of candidate MOFs. The hits identified by this proof-of-concept workflow include ZIF-8 and ZIF-67 previously shown to have large differences in propane and propene diffusivities as well as two other materials that have not been tested experimentally yet. This work emphasises the importance of taking into account framework flexibility when studying guest transport in porous materials, demonstrates the potential of the data-driven identification of high-performance materials and highlights the ways of improving the predictive power of the screening workflow.

9.
Angew Chem Int Ed Engl ; 59(48): 21367-21371, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32876969

RESUMO

Developing the competence of molecular sorbents for energy-saving applications, such as C8 separations, requires efficient, stable, scalable, and easily recyclable materials that can readily transition to commercial implementation. Herein, we report an azobenzene-based cage for the selective separation of p-xylene isomer across a range of C8 isomers in both vapor and liquid states with selectivity that is higher than the reported all-organic sorbents. The crystal structure shows non-porous cages that are separated by p-xylene molecules through selective CH-π interactions between the azo bonds and the methyl hydrogen atoms of the xylene molecules. This cage is stable in solution and can be regenerated directly under vacuum to be used in multiple cycles. We envisage that this work will promote the investigation of the azo bond as well as guest-induced crystal-to-crystal phase transition in non-porous organic solids for energy-intensive separations.

10.
J Am Chem Soc ; 140(44): 14571-14575, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30293426

RESUMO

Here we introduce for the first time a metal-free trianglamine-based supramolecular organic framework, T-SOF-1, with permanent intrinsic porosity and high affinity to CO2. The capability of tuning the pore aperture dimensions is also demonstrated by molecular guest encapsulation to afford excellent CO2/CH4 separation for natural gas upgrading.

11.
Langmuir ; 34(48): 14546-14551, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30403872

RESUMO

The discovery of appropriate synthetic reaction conditions for fabricating a stable zirconium-based molecular sieve (Zr-fum-fcu-MOF) with minimal defects and its utilization in the challenging separation of linear paraffins from branched paraffins is reported. The crystallinity and structural defects were modulated and adjusted at the molecular level by controlling the synthetic reaction conditions (i.e., amounts of modulators and ligands). The impact of molecular defects on the separation of n-butane from iso-butane was studied through the preparation, fine characterization, and performance evaluation of Zr-fum-fcu-MOFs with varying degrees of defects. Defect-rich Zr-fum-fcu-MOFs were found to have poor n-butane/iso-butane separation, mainly driven by thermodynamics, while Zr-fum-fcu-MOFs with fewer or minimal defects showed efficient separation, driven mainly by kinetics and full molecular exclusion mechanisms. The impact of intrinsic defects (i.e., missing organic or inorganic blocks) on the associated mechanisms involved in the separation of n-butane/iso-butane was evidenced through single-gas adsorption, mixed-gas column breakthrough experiments, and calorimetric studies. This investigation demonstrates, for the first time, the importance of controlling intrinsic defects to maintain the selective exclusion behavior of hydrocarbon isomers when using molecular sieves.

12.
Chem Soc Rev ; 46(11): 3402-3430, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28555216

RESUMO

The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

13.
J Am Chem Soc ; 139(31): 10715-10722, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28661666

RESUMO

Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of the dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, have yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly connected rare-earth-based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45%-65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness, and unique humidity-control performance, as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single-crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g·g-1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces, such as space shuttles, aircraft cabins, and air-conditioned buildings.

14.
J Am Chem Soc ; 139(8): 3265-3274, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161947

RESUMO

Highly connected and edge-transitive nets are of prime importance in crystal chemistry and are regarded as ideal blueprints for the rational design and construction of metal-organic frameworks (MOFs). We report the design and synthesis of highly connected MOFs based on reticulation of the sole two edge-transitive nets with a vertex figure as double six-membered-ring (d6R) building unit, namely the (4,12)-coordinated shp net (square and hexagonal-prism) and the (6,12)-coordinated alb net (aluminum diboride, hexagonal-prism and trigonal-prism). Decidedly, the combination of our recently isolated 12-connected (12-c) rare-earth (RE) nonanuclear [RE9(µ3-OH)12(µ3-O)2(O2C-)12] carboxylate-based cluster, points of extension matching the 12 vertices of hexagonal-prism d6R, with 4-connected (4-c) square porphyrinic tetracarboxylate ligand led to the formation of the targeted RE-shp-MOF. This is the first time that RE-MOFs based on 12-c molecular building blocks (MBBs), d6R building units, have been deliberately targeted and successfully isolated, paving the way for the long-awaited (6,12)-c MOF with alb topology. Indeed, combination of a custom-designed hexacarboxylate ligand with RE salts led to the formation of the first related alb-MOF, RE-alb-MOF. Intuitively, we successfully transplanted the alb topology to another chemical system and constructed the first indium-based alb-MOF, In-alb-MOF, by employing trinuclear [In3(µ3-O)(O2C-)6] as the requisite 6-connected trigonal-prism and purposely made a dodecacarboxylate ligand as a compatible 12-c MBB. Prominently, the dodecacarboxylate ligand was employed to transplant shp topology into copper-based MOFs by employing the copper paddlewheel [Cu2(O2C-)4] as the complementary square building unit, affording the first Cu-shp-MOF. We revealed that highly connected edge-transitive nets such shp and alb are ideal for topological transplantation and deliberate construction of related MOFs based on minimal edge-transitive nets.

15.
J Am Chem Soc ; 138(29): 9301-7, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27388208

RESUMO

The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, namely, from confined spaces (<0.5%) and in particular from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the appropriate pore system (size, shape, and functionality), ideal for the effective and energy-efficient removal of trace carbon dioxide. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm(3) (STP) cm(-3)) for a physical adsorbent at 400 ppm of CO2 and 298 K. Practically, NbOFFIVE-1-Ni offers the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in conventional physical adsorbents but considerably lower than chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2 selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2 selectivity under practical carbon capture conditions. Pertinently, the notable hydrolytic stability positions NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

16.
J Am Chem Soc ; 137(41): 13308-18, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26364990

RESUMO

The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.


Assuntos
Alumínio/química , Dióxido de Carbono/química , Cristalização , Metano/química , Oxigênio/química , Cristalografia por Raios X
17.
Angew Chem Int Ed Engl ; 54(48): 14353-8, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26429515

RESUMO

Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies.

18.
Angew Chem Int Ed Engl ; 54(7): 2079-83, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25581475

RESUMO

A systematic study is presented of three closely related microporous metal-organic frameworks the pore dimensions of which vary according to the choice of 4,4'-bipyridyl linker. The tunable linker allows exploration of the effect of increasing pore dimensions on the sorption behavior of the frameworks. The MOFs described capture CO2 under supercritical conditions and continue to sequester the gas under ambient conditions. Gas sorption isotherms for CO2 are compared with thermogravimetric data, and the CO2 molecules in the channels of the frameworks could be modeled using single-crystal X-ray diffraction analysis. Crystallographic data were used to construct a theoretical model based on DFT methods to calculate framework electrostatic potential maps with a view to understanding the nature of the sorbate-sorbent interactions.

19.
J Am Chem Soc ; 136(10): 3776-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24555817

RESUMO

A known doubly interpenetrated metal-organic framework with the formula [Zn2(ndc)2(bpy)] possesses minimal porosity when activated. We show not only that the material converts to its triply interpenetrated analogue upon desolvation, but also that the transformation occurs in a single-crystal to single-crystal manner under ambient conditions. The mechanism proposed for the conversion is supported by computational methods and by analogy with the solid-state behavior of an analogous system.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38230646

RESUMO

The pursuit of developing sensors, characterized by their fluorescence-intensity enhancement or "turn-on" behavior, for accurately detecting noxious small molecules, such as amines, at minimal levels remains a significant challenge. Metal-organic frameworks (MOFs) have emerged as promising candidates as sensors as a result of their diverse structural features and tunable properties. This study introduces the rational synthesis of a new highly coordinated (6,12)-connected rare earth (RE) alb-MOF-3, by combining the nonanuclear 12-connected hexagonal prismatic building units, [RE9(µ3-O)2(µ3-X)12(OH)2(H2O)7(O2C-)12], with the 6-connected rigid trigonal prismatic extended triptycene ligand. The resulting Y-alb-MOF-3 material is distinguished by its high microporosity and Brunauer-Emmett-Teller surface area of approximately 1282 m2/g, which offers notable hydrolytic stability. Remarkably, it demonstrates selective detection capabilities for primary aliphatic amines in aqueous media, as evidenced by fluorescence turn-on behavior and photoluminescence (PL) titration measurements. This work emphasizes the potential of MOFs as sensors in advancing their selectivity and sensitivity toward various analytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA