Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 162(4): 1210-1225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951993

RESUMO

BACKGROUND & AIMS: There is a major unmet need to assess the prognostic impact of antifibrotics in clinical trials because of the slow rate of liver fibrosis progression. We aimed to develop a surrogate biomarker to predict future fibrosis progression. METHODS: A fibrosis progression signature (FPS) was defined to predict fibrosis progression within 5 years in patients with hepatitis C virus and nonalcoholic fatty liver disease (NAFLD) with no to minimal fibrosis at baseline (n = 421) and was validated in an independent NAFLD cohort (n = 78). The FPS was used to assess response to 13 candidate antifibrotics in organotypic ex vivo cultures of clinical fibrotic liver tissues (n = 78) and cenicriviroc in patients with nonalcoholic steatohepatitis enrolled in a clinical trial (n = 19, NCT02217475). A serum protein-based surrogate FPS was developed and tested in a cohort of compensated cirrhosis patients (n = 122). RESULTS: A 20-gene FPS was defined and validated in an independent NAFLD cohort (adjusted odds ratio, 10.93; area under the receiver operating characteristic curve, 0.86). Among computationally inferred fibrosis-driving FPS genes, BCL2 was confirmed as a potential pharmacologic target using clinical liver tissues. Systematic ex vivo evaluation of 13 candidate antifibrotics identified rational combination therapies based on epigallocatechin gallate, which were validated for enhanced antifibrotic effect in ex vivo culture of clinical liver tissues. In patients with nonalcoholic steatohepatitis treated with cenicriviroc, FPS modulation was associated with 1-year fibrosis improvement accompanied by suppression of the E2F pathway. Induction of the PPARα pathway was absent in patients without fibrosis improvement, suggesting a benefit of combining PPARα agonism to improve the antifibrotic efficacy of cenicriviroc. A 7-protein serum protein-based surrogate FPS was associated with the development of decompensation in cirrhosis patients. CONCLUSION: The FPS predicts long-term fibrosis progression in an etiology-agnostic manner, which can inform antifibrotic drug development.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Progressão da Doença , Desenvolvimento de Medicamentos , Fibrose , Humanos , Fígado/patologia , Cirrose Hepática/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética
2.
Nanomedicine ; 14(2): 317-325, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29157977

RESUMO

Safety is prerequisite for preventive medicine, but non-toxic agents are generally ineffective as clinical chemoprevention. Here we propose a strategy overcoming this challenge by delivering molecular-targeted agent specifically to the effector cell type to achieve sufficient potency, while circumventing toxicity in the context of cancer chemoprevention. Hepatic myofibroblasts drive progressive fibrosis that results in cirrhosis and liver cancer. In a rat model of cirrhosis-driven liver cancer, a small molecule epidermal growth factor receptor inhibitor, erlotinib, was delivered specifically to myofibroblasts by a versatile nanoparticle-based system, targeting platelet-derived growth factor receptor-beta uniquely expressed on their surface in the liver. With systemic administration of erlotinib, tumor burden was reduced to 31%, which was further improved to 21% by myofibroblast-targeted delivery even with reduced erlotinib dose (7.3-fold reduction with equivalent erlotinib dose) and less hepatocyte damage. These findings demonstrate a strategy, cell type-specific kinase inhibition, for more effective and safer precision cancer chemoprevention.


Assuntos
Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/prevenção & controle , Miofibroblastos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas Experimentais/etiologia , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Ratos , Ratos Wistar
3.
Gut ; 66(7): 1286-1296, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27849562

RESUMO

OBJECTIVE: Advanced hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Palbociclib, a well-tolerated and selective CDK4/6 inhibitor, has shown promising results in the treatment of retinoblastoma (RB1)-positive breast cancer. RB1 is rarely mutated in HCC, suggesting that palbociclib could potentially be used for HCC therapy. Here, we provide a comprehensive characterisation of the efficacy of palbociclib in multiple preclinical models of HCC. DESIGN: The effects of palbociclib on cell proliferation, cellular senescence and cell death were investigated in a panel of human liver cancer cell lines, in ex vivo human HCC samples, in a genetically engineered mouse model of liver cancer, and in human HCC xenografts in vivo. The mechanisms of intrinsic and acquired resistance to palbociclib were assessed in human liver cancer cell lines and human HCC samples by protein and gene expression analyses. RESULTS: Palbociclib suppressed cell proliferation in human liver cancer cell lines by promoting a reversible cell cycle arrest. Intrinsic and acquired resistance to palbociclib was determined by loss of RB1. A signature of 'RB1 loss of function' was found in <30% of HCC samples. Palbociclib, alone or combined with sorafenib, the standard of care for HCC, impaired tumour growth in vivo and significantly increased survival. CONCLUSIONS: Palbociclib shows encouraging results in preclinical models of HCC and represents a novel therapeutic strategy for HCC treatment, alone or particularly in combination with sorafenib. Palbociclib could potentially benefit patients with RB1-proficient tumours, which account for 70% of all patients with HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Proteínas de Ligação a Retinoblastoma/metabolismo , Sorafenibe , Ubiquitina-Proteína Ligases/metabolismo
4.
Nat Commun ; 12(1): 5525, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535664

RESUMO

Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.


Assuntos
Descoberta de Drogas , Fígado/patologia , Modelos Biológicos , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimioprevenção , Estudos de Coortes , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Knockout , Nizatidina/farmacologia , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
5.
Exp Mol Med ; 50(1): e419, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303513

RESUMO

Tractable experimental model that accounts for inter-tumor molecular heterogeneity is a key element of anti-cancer drug development. Hepatocellular carcinoma is known to exhibit highly heterogeneous molecular aberrations across the tumors, including somatic genetic and epigenetic alterations. Previous studies showed that molecular tumor subtypes determined by transcriptome, as a comprehensive functional readout, are reproducibly observed across global patient populations irrespective of geographic and etiological variations. Here we demonstrate that transcriptomic hepatocellular carcinoma subtypes, S1 and S2, determined by our previous transcriptome meta-analysis of multiple clinical hepatocellular carcinoma cohorts, are presented in a panel of hepatoma cell lines widely used by the research community. Interestingly, cell line that resembles gene expression pattern of S3 subtype, representing less aggressive tumors, was not identified in the panel. MYC pathway-activated S2-like cell lines showed higher sensitivity to a small molecule BET bromodomain inhibitor, (+)-JQ1, which has anti-MYC activity. These results support the use of hepatoma cell lines as models to evaluate molecular subtype-specific drug response, which is expected to lead to development of tailored, precision care of the patients with hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Antineoplásicos/farmacologia , Azepinas/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Terapia de Alvo Molecular , Triazóis/farmacologia , alfa-Fetoproteínas/genética , beta Catenina/genética
6.
Curr Hepatol Rep ; 16(1): 64-71, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28337405

RESUMO

PURPOSE OF REVIEW: Current clinical practice guidelines recommend regular hepatocellular carcinoma (HCC) surveillance with biannual ultrasound with or without serum alpha-fetoprotein uniformly applied to all patients with cirrhosis. However, clinical implementation of this one-size-fits-all strategy has been challenging as evidenced by very low application rate below 20% due to various reasons, including suboptimal performance of the surveillance modalities. RECENT FINDINGS: Newly emerging imaging techniques such as abbreviated MRI (AMRI) and molecular HCC risk biomarkers have increasingly become available for clinical evaluation and implementation. These technologies may have a potential to reshape HCC surveillance by enabling tailored strategies. This would involve performing optimized surveillance tests according to individual HCC risk, and allocating limited medical resources for HCC surveillance based on cost-effectiveness. SUMMARY: Tailored HCC surveillance could lead to achievement of precision HCC care and substantial improvement of the current dismal patient prognosis.

7.
Sci Rep ; 7(1): 8119, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808340

RESUMO

Krüppel-like factor 6 (KLF6) is a transcription factor and tumor suppressor. We previously identified KLF6 as mediator of hepatocyte glucose and lipid homeostasis. The loss or reduction of KLF6 is linked to the progression of hepatocellular carcinoma, but its contribution to liver regeneration and repair in acute liver injury are lacking so far. Here we explore the role of KLF6 in acute liver injury models in mice, and in patients with acute liver failure (ALF). KLF6 was induced in hepatocytes in ALF, and in both acetaminophen (APAP)- and carbon tetrachloride (CCl4)-treated mice. In mice with hepatocyte-specific Klf6 knockout (DeltaKlf6), cell proliferation following partial hepatectomy (PHx) was increased compared to controls. Interestingly, key autophagic markers and mediators LC3-II, Atg7 and Beclin1 were reduced in DeltaKlf6 mice livers. Using luciferase assay and ChIP, KLF6 was established as a direct transcriptional activator of ATG7 and BECLIN1, but was dependent on the presence of p53. Here we show, that KLF6 expression is induced in ALF and in the regenerating liver, where it activates autophagy by transcriptional induction of ATG7 and BECLIN1 in a p53-dependent manner. These findings couple the activity of an important growth inhibitor in liver to the induction of autophagy in hepatocytes.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Autofagia/fisiologia , Fator 6 Semelhante a Kruppel/metabolismo , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia , Acetaminofen/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Autofagia/efeitos dos fármacos , Tetracloreto de Carbono/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Genes Supressores de Tumor/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Células Hep G2 , Hepatectomia/métodos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
8.
Cancer Cell ; 30(6): 879-890, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27960085

RESUMO

Cirrhosis is a milieu that develops hepatocellular carcinoma (HCC), the second most lethal cancer worldwide. HCC prediction and prevention in cirrhosis are key unmet medical needs. Here we have established an HCC risk gene signature applicable to all major HCC etiologies: hepatitis B/C, alcohol, and non-alcoholic steatohepatitis. A transcriptome meta-analysis of >500 human cirrhotics revealed global regulatory gene modules driving HCC risk and the lysophosphatidic acid pathway as a central chemoprevention target. Pharmacological inhibition of the pathway in vivo reduced tumors and reversed the gene signature, which was verified in organotypic ex vivo culture of patient-derived fibrotic liver tissues. These results demonstrate the utility of clinical organ transcriptome to enable a strategy, namely, reverse-engineering precision cancer prevention.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/prevenção & controle , Perfilação da Expressão Gênica/métodos , Cirrose Hepática/genética , Neoplasias Hepáticas/prevenção & controle , Lisofosfolipídeos/biossíntese , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/genética , Ratos , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA