Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311966, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770995

RESUMO

Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

2.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005313

RESUMO

A boron and iron co-doped biochar (B-Fe/biochar) from Masson pine bark was fabricated and used to activate peroxydisulfate (PDS) for the degradation of guaiacol (GL). The roles of the dopants and the contribution of the radical and non-radical oxidations were investigated. The results showed that the doping of boron and iron significantly improved the catalytic activity of the biochar catalyst with a GL removal efficiency of 98.30% within 30 min. The degradation of the GL mainly occurred through the generation of hydroxyl radicals (·OHs) and electron transfer on the biochar surface, and a non-radical degradation pathway dominated by direct electron transfer was proposed. Recycling the B-Fe/biochar showed low metal leaching from the catalyst and satisfactory long-term stability and reusability, providing potential insights into the use of metal and non-metal co-doped biochar catalysts for PDS activation.


Assuntos
Boro , Casca de Planta , Carvão Vegetal , Ferro
3.
Biomacromolecules ; 23(3): 829-838, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35191679

RESUMO

Thehighly efficient utilization of lignin is of great importance for the development of the biorefinery industry. Herein, a novel "core-shell" lignin nanoparticle (LNP) with a diameter of around 135 nm was prepared, after the lignin was isolated from the effluent of formic acid fractionation via dialysis. In an attempt to endow composite materials with vital functionalities, the LNP was added to the starch film and the starch/polyvinyl alcohol (PVA) or starch/polyethylene oxide (PEO) composite film. The results showed that the hydrophobicity performance of the synthesized films was enhanced significantly. Specifically, the dynamic water contact angle value of the starch/PVA composite film with 1% (wt) addition of LNPs could be maintained as high as 122° for 180 s; the starch/PEO composite film also achieved an excellent water contact angle above 120°. The addition of LNPs promoted the formation of some rough structures on the film surface, as shown by the scanning electron microscopy images, which could repel the water molecules efficiently and are closely related to the enhanced hydrophobicity of the starch film. What is more, the as-prepared LNP conferred strengthened thermal stability and ultraviolet blocking properties on the starch composite film. The structural combination of the polymer film with LNPs holds the promise for providing advanced functionalities to the composite material with wide applications.


Assuntos
Lignina , Nanopartículas , Interações Hidrofóbicas e Hidrofílicas , Lignina/química , Nanopartículas/química , Álcool de Polivinil/química , Amido/química , Resistência à Tração , Água/química
4.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499190

RESUMO

The exploration of functional films using sustainable cellulose-based materials to replace plastics has been of much interest. In this work, two kinds of lignin nanoparticles (LNPs) were mixed with cellulose nanofibrils (CNFs) for the fabrication of composite films with biodegradable, flexible and ultraviolet blocking performances. LNPs isolated from p-toluenesulfonic acid hydrolysis was easily recondensed and deposited on the surface of composite film, resulting in a more uneven surface; however, the composite film consisting of CNFs and LNPs isolated from maleic acid hydrolysis exhibited a homogeneous surface. Compared to pure CNF film, the composite CNF/LNP films exhibited higher physical properties (tensile strength of 164 MPa and Young's modulus of 8.0 GPa), a higher maximal weight loss temperature of 310 °C, and a perfect UVB blocking performance of 95.2%. Meanwhile, the composite film had a lower environmental impact as it could be rapidly biodegraded in soil and manmade seawater. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites to produce functional and biodegradable film as a promising alternative to petrochemical plastics.


Assuntos
Nanofibras , Nanopartículas , Lignina/química , Nanofibras/química , Celulose/química , Nanopartículas/química , Resistência à Tração
5.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299398

RESUMO

Rice straw hydrotropic lignin was extracted from p-Toluene sulfonic acid (p-TsOH) fractionation with a different combined delignification factor (CDF). Hydrotropic lignin characterization was systematically investigated, and alkaline lignin was also studied for the contrast. Results showed that the hydrotropic rice straw lignin particle was in nanometer scopes. Compared with alkaline lignin, the hydrotropic lignin had greater molecular weight. NMR analysis showed that ß-aryl ether linkage was well preserved at low severities, and the unsaturation in the side chain of hydrotropic lignin was high. H units and G units were preferentially degraded and subsequently condensed at high severity. High severity also resulted in the cleavage of part ß-aryl ether linkage. 31P-NMR showed the decrease in aliphatic hydroxyl groups and the increasing carboxyl group content at high severity. The maximum weight loss temperature of the hydrotropic lignin was in the range of 330-350 °C, higher than the alkaline lignin, and the glass conversion temperature (Tg) of the hydrotropic lignin was in the range of 107-125 °C, lower than that of the alkaline lignin. The hydrotropic lignin has high ß-aryl ether linkage content, high activity, nanoscale particle size, and low Tg, which is beneficial for its further valorization.


Assuntos
Lignina/química , Lignina/isolamento & purificação , Oryza/química , Água/química , Biomassa , Fracionamento Químico , Hidrólise , Lignina/análise
6.
J Environ Manage ; 271: 111031, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778311

RESUMO

Generally, the mechanical strength and stiffness of old corrugated cardboard (OCC) waste paper are decreased after multiple recycling procedures. Surface sizing starch, which is extensively used in the surface sizing of paper making, accumulates after dissolving from the fibers and is transformed into pollutant during the OCC re-pulping process. To overcome the pollution and reutilization problem of the waste starch during the recycling process of OCC paper, waste starch was ionized using hydrogen peroxide (H2O2) to improve the mechanical properties of OCC paper during the reutilization. The results showed that the carboxyl group of waste starch increased with an increasing degree of ionization, resulting in enhanced copper ion adsorption capacity. Furthermore, the retention rate of the modified starch in the wet-end increased from 18.0% to 48.2%. The OCC paper presented the highest burst index and tensile strength of 8.94 kPa m2/g and 112.5 N m/g, respectively, when MS-2 was added. This work has great significance for implementation of the cleaning production of OCC waste papers and the reutilization of the waste starch.


Assuntos
Peróxido de Hidrogênio , Amido , Papel , Reciclagem , Resistência à Tração
7.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932051

RESUMO

Lignin is an important component of plant fiber raw materials, and is a three-dimensional network structure aromatic polymer with abundant resources and a complex structure in nature. Lignin is generally used as industrial waste, and its potential value has not been fully utilized. Modern agriculture extensively uses chemical fertilizers, leading to the gradual degradation of soil fertility and structure, which seriously affects crop growth, nutrient transport, and root respiration function. Based on soil bulk density, porosity, aggregates, and their stability indicators, this study analyzed the effects of aminated industrial lignin and its loading with arbuscular mycorrhizal fungi on soil structure improvement and plant growth. It was hoped that resource-rich lignin could play a beneficial role in improving soil structure and promoting crop growth. The phenolic hydroxyl group of lignin was epoxidized and further aminated to load with arbuscular mycorrhizal fungi. The results indicated that amine-modified lignin could effectively load with arbuscular mycorrhizal fungi. The application of arbuscular mycorrhizal fungi-supported aminated lignin to soil aggregate structure improvement greatly reduced the bulk density of soil, and increased the porosity of soil and the content of large granular soil. Compared with unmodified soil, soil bulk density decreased by 73.08%, the porosity of soil increased by 70.43%, and the content of large granular soil increased by 56.38%. Using the improved soil for corn cultivation efficiently increased the biomass of corn. The plant height was increased by 72.16%, the root-shoot ratio was increased by 156.25%, and other indexes were also improved to varying degrees. The experimental method provides an important basis for the effective utilization of lignin materials in agriculture in the future.

8.
Carbohydr Polym ; 334: 122060, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553244

RESUMO

Flexible conductive hydrogels (FCHs) have attracted widespread interest as versatile monoliths that can be intricately integrated with various ingredients boasting multiple functionalities. The chemicophysical properties of FCHs cover a wide range, which significantly vary in their building blocks. However, achieving both favorable mechanical strength and high conductivity simultaneously through a facile approach remains a challenge. Herein, polyvinyl alcohol, dialdehyde cellulose nanofibrils, silver nanoparticles, borax, and tannic acid are readily "one-pot" incorporated into FCHs with great tensile stress (499 kPa), tensile strain (4591 %), and compressive stress (269 kPa) due to abundant hydrogen bonding, dynamic borate-diol bonding, and intermolecular acetalization. They also exhibit desired self-healing, generalized-adhesive, and antibacterial performances. Taking advantage of these, FCHs are further employed to support an epidermal sensor, on which remarkable strain sensitivity (gauge factor = 8.22), high-pressure sensitivity (≥ 0.258 kPa-1), and fast response (≤ 190 ms) are recorded. Its highly adaptive mechano-electric transformability and functions can be well maintained in serving as an array unit and touch screen pen. The results well addressed in this work are anticipated to pave the universal way of engineering FCHs.

9.
Int J Biol Macromol ; 273(Pt 2): 132897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848826

RESUMO

Lignin-derived carbon nanodots (LCNs) are nanometer-scale carbon spheres fabricated from naturally abundant lignin. Owing to rich and highly heritable graphene like π-π conjugated structure of lignin, to fabricate LCNs from it not only endows LCNs with on-demand tunable size and optical features, but also further broadens the green and chemical engineering of carbon nanodots. Recently, they have become increasingly popular in sensing, bioimaging, catalysis, anti-counterfeiting, energy storage/conversion, and others. Despite the enormous research efforts put into the ongoing development of lignin value-added utilization, few commercial LCNs are available. To have a deeper understanding of this issue, critical impacts on the preparation, properties, and applications of state-of-the-art LCNs are carefully reviewed and discussed. A concise analysis of their unique advantages, limitations for specific applications, and current challenges and outlook is conducted. We hope that this review will stimulate further advances in the functional material-oriented production of lignin.


Assuntos
Carbono , Lignina , Lignina/química , Carbono/química , Nanopartículas/química , Catálise , Nanoestruturas/química
10.
J Colloid Interface Sci ; 666: 529-539, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613975

RESUMO

Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved. The existance of zinc ions also significantly improved the carbon retention rate and inhibited structural shrinkage, thus making the carbon aerogels retain ultra-high elasticity and fatigue resistance after compression. Moreover, the carbon aerogel possessed excellent piezoresistive pressure sensing performance with a wide detection range of 0-7.8 kPa, high sensitivity of 11.04 kpa-1, low detection limit (2 % strain), fast response (112 ms), and good durability (over 1,000 cycles). Based on these excellent properties, the carbon aerogel pressure sensors were further successfully used for human motion monitoring, from joint motion to and speech recognition.


Assuntos
Alginatos , Carbono , Celulose , Elasticidade , Géis , Dispositivos Eletrônicos Vestíveis , Carbono/química , Géis/química , Humanos , Celulose/química , Alginatos/química , Anisotropia , Tamanho da Partícula , Propriedades de Superfície , Zinco/química
11.
Int J Biol Macromol ; 263(Pt 1): 130176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368977

RESUMO

Smart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.75 nm to 144.81 nm, and the pure water flux can be regulated from 342 to 2118 L·m-2·h-1 with remarkable variation in the pH range of 1-11 and temperature range of 20-60 °C. The adjustability of pore size is able to achieve the gradient selective separation of particles and polymers with different sizes. In addition, owing to the underwater superoleophobicity and the nanoscale pore structure, the membrane separation efficiencies of emulsified oils are higher than 99 %. Moreover, the controllable pore size endows the membrane with good self-cleaning performance. This nanocellulose-based smart gating membrane has potential applications in the fields of controllable permeation, selective separation, fluid transport, and drug/chemical controlled release systems.


Assuntos
Polímeros , Água , Temperatura , Água/química , Polímeros/química , Celulose , Concentração de Íons de Hidrogênio
12.
Int J Biol Macromol ; 258(Pt 2): 129107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159705

RESUMO

A large number of polluting substances, including chlorinated organic substances that were highly stable and hazardous, has been emitted due to the rapidly developing chemical industry, which will affect the ecological environment. Nanocellulose aerogels are effective carriers for adsorption of oil substances and organic solvents, however, the extremely strong hydrophilicity and poor mechanical properties limited their widespread applications. In this study, TEMPO-oxidized cellulose nanofibrils was modified with 2, 4-toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) to prepare strong and hydrophobic aerogels for oil adsorption. The main purpose was to evaluate and compare the effects of two diisocyanates on various properties of modified aerogels. It was found that the modified aerogel had better hydrophobic properties, mechanical properties and adsorption properties. In particular, the modified aerogel with TDI as crosslinker showed a better performance, with a maximum chloroform adsorption capacity of 99.3 g/g, a maximum water contact angle of 131.3°, and a maximum compression stress of 36.3 kPa. This study provides further evidence of the potential of functional nanocellulose aerogel in addressing environmental pollution caused by industrial emissions.


Assuntos
Celulose , Tolueno 2,4-Di-Isocianato , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Adsorção , Solventes/química , Água/química
13.
Int J Biol Macromol ; 249: 125958, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37499715

RESUMO

Elastic and hydrophobic aerogels have received a lot of attention in dealing with the increasing oil pollution due to their recyclable properties. Herein, we present an ultralight and superelastic aerogel with highly oriented polygon structure based on chitin nanofibril (ChNF) and chitosan (CS) by directional freezing. The chemical cross-linking enables good mechanical strength at low aerogel density. After 500 compression-release cycles, the aerogel can retain the deformation recovery rate of 88 % in air, demonstrating the excellent resilience. The bio-based aerogel has high absorption capacity (52-114 g/g) for various oils and organic solvents, and it is able to achieve the absorption retention of 90 % even after 20 absorption-extrusion cycles. Moreover, owing to the good elasticity, the pore size of the aerogel can be adjusted by compression to selectively separate water-in-oil emulsions of different particle sizes with separation efficiencies higher than 99.5 %. The bio-based aerogel with good cycle performance has broad application prospects in the field of oil-water separation.


Assuntos
Quitosana , Quitina , Óleos/química , Solventes , Água/química
14.
Int J Biol Macromol ; 237: 124081, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934814

RESUMO

In order to improve the utilization of industrial lignin as an effective component for ultraviolet (UV) shielding, organic solvent (methanol, ethanol, and acetone) fractionation was applied to improve its UV absorption performance and reduce its apparent color. Physicochemical properties of lignin and lignin-based sunscreens, such as molar mass fraction, functional group content, color change and UV shielding properties, were characterized in detail by GPC, UV spectroscopy, 31P NMR and HSQC-NMR spectroscopy. The results showed that the color and UV-shielding properties of the soluble fraction were significantly superior to those of the original and insoluble fractions. Different lignin fractions were acted as the only active substance in the pure cream and its UV-shielding properties were compared. Among them, the composite sunscreen by adding 5 wt% acetone fractionated lignin had highest sun protection factor (SPF) value of 6.6, approximately 4.5 times higher than those sunscreens mixed with pristine lignin. Overall, this work offers the potential of industrial lignin in value-added applications such as UV protection and cosmetics.


Assuntos
Lignina , Protetores Solares , Protetores Solares/química , Lignina/química , Acetona , Solventes/química , Espectroscopia de Ressonância Magnética , Raios Ultravioleta
15.
Int J Biol Macromol ; 252: 126370, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595711

RESUMO

Cellulose aerogels exhibit biocompatibility and biodegradability, rendering them promising candidate for application in building energy conservation and insulation materials. However, the intrinsic inflammability of pristine cellulose aerogel causes unneglectable safety concerns, hindering their application in energy-efficient buildings. Herein, a thermal insulating, fire-retardant, strong, and lightweight aerogel was produced via freeze-casting suspensions of cellulose nanofibril (CNF) and l-glutamine functionalized boron nitride nanosheets (BNNS-g). The aerogel with a BNNS-g:CNF concentration ratio of 15:5 exhibited outstanding mechanical strength owing to the strong interaction between BNNS-g and CNF as well as satisfactory thermal insulating performance (0.052 W/m·K). Particularly, this aerogel showed excellent fire-retardant and self-extinguishing capabilities in the vertical burning test, which remained unscathed after over 60 s of burning in a butane flame. Further, the limit oxygen index (LOI) of this aerogel was 36.0 %, which was better than the LOIs of traditional petrochemical-based insulating materials. This study provides a promising strategy for producing aerogels with excellent properties using cellulose and other inorganic nano-fillers.


Assuntos
Celulose , Retardadores de Chama , Glutamina , Oxigênio
16.
Environ Sci Pollut Res Int ; 29(26): 39702-39711, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35106726

RESUMO

When old corrugated cardboard (OCC) is returned to the paper mill for repulping and reuse, the starch, which is added to the paper surface as a reinforcement agent, is dissolved into the pulping wastewater. Most of the OCC pulping wastewater is recycled to save precious water resources; however, during the water recycling process, the accumulation of dissolved starch stimulates microbial reproduction, which causes poor water quality and putrid odor. This problem seriously affects the stability of the papermaking process and product quality. In this study, phosphomolybdic acid (H3PMo12O40, abbreviated as PMo12) was utilized to catalyze the waste starch present in papermaking wastewater to monosaccharides, realizing the resource utilization of waste starch. The results showed that the optimized yield of total reducing sugar (78.68 wt%) and glycolic acid (12.83 wt%) was achieved at 145 °C with 30 wt% PMo12 at pH 2, which is equivalent to 91.51 wt% starch recovered from wastewater for resource utilization. In addition, the regeneration of the reduced PMo12 was realized by applying a potential of 1 V for 2 h. Overall, this study has theoretical significance and potential application value for resource utilization of waste starch in OCC pulping process and cleaner management of OCC waste paper.


Assuntos
Amido , Águas Residuárias , Catálise , Resíduos Industriais/análise , Molibdênio , Ácidos Fosfóricos , Reciclagem
17.
Carbohydr Polym ; 298: 120084, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241275

RESUMO

Developing renewable and biodegradable materials derived from cellulose is an attractive strategy to replace petroleum-derived plastics. In this study, metal ions (Cu2+, Fe3+, and Al3+) were added as a green binder into carboxymethyl cellulose (CMC) films to improve their mechanical properties and water resistance capacity. The tensile strengths of CMCAl3+ films were 133 MPa and 99 MPa at 43 % and 97 % humidity, respectively, which were comparable to or greater than those of the majority of commercially available plastics. Additionally, we proposed an interfacial adhesion-assisted molding strategy for forming cellulose-based films, avoiding film wrinkles and unevenness during drying and metal-coordination formation. The resultant films exhibited high transparency, excellent mechanical properties, water resistance capacity, ultraviolet light (UV) shielding, and antibacterial activity. In summary, the biodegradable, eco-friendly, excellent application performance, and adaptability of CMCMn+ (Mn+: polyvalent metal ions) films open new prospects as a viable alternative to non-biodegradable plastics.


Assuntos
Carboximetilcelulose Sódica , Petróleo , Antibacterianos/farmacologia , Celulose , Plásticos , Água
18.
Bioresour Technol ; 348: 126793, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121097

RESUMO

Hemicelluloses were effectively separated using p-toluenesulfonic acid (p-TsOH) treatment at high temperature. High temperature and pressure promoted hydrolysis of hemicellulose, which limited its value upon recovery. In this study, bagasse hemicellulose was separated and extracted by p-TsOH treatment at atmospheric pressure. The effects of temperature, p-TsOH concentration, and time on hemicellulose separation and extraction were investigated. The optimal conditions were 80 °C, 3.0% p-TsOH, and 120 min. The separation and extraction yield of hemicellulose was 73.23% and 36.02%, respectively. Extraction hemicellulose with 95.60% purity was obtained. In addition, the dissolution mechanism of hemicellulose was analyzed. Degradation of ß-glycosidic bonds was inhibited. Benzyl ether bond between carbohydrates and lignin was selectively cleaved. The skeleton structure of xylan in hemicellulose was protected while the functional groups of branch chain were severely damaged. It provides a valuable theoretical basis for the efficient separation and extraction of hemicellulose.


Assuntos
Lignina , Polissacarídeos , Pressão Atmosférica , Benzenossulfonatos , Hidrólise , Lignina/química , Polissacarídeos/química , Temperatura
19.
Carbohydr Polym ; 298: 120073, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241317

RESUMO

In this work, a versatile cellulose nanocrystal­carbon dots (CNC-CDs) architecture is prepared and applied in environmental remediation and biological sensing. The citric acid (CA) is employed to extract CNCs and in-situ synthesize blue-emissive CDs. The carboxyl-rich surface of CNC-CDs enables the chelation of Hg2+ and fluorescence quenching of CDs, realizing the detection and adsorption of Hg2+ with a film comprised of the architecture. The limit of detection (LOD) is measured as 12.8 nM with satisfying retention efficiency. The versatility of CNC-CDs is demonstrated by the fabrication of a fluorescence resonance energy transfer (FRET) sensor using m-tetrakis(4-sulfonatophenyl)porphine (TSPP) as FRET acceptor and Fe3+ receptor. Fluorescence of the sensor is responsive to Fe3+ in a ratiometric manner, which significantly contributes to the visualized and sensitive Fe3+ detection (6.9 nM). In combination with excellent biocompatibility, the FRET sensor is capable of imaging intracellular Fe3+.


Assuntos
Mercúrio , Nanopartículas , Pontos Quânticos , Carbono , Celulose , Ácido Cítrico , Corantes Fluorescentes
20.
Carbohydr Polym ; 278: 119011, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973804

RESUMO

Cellulose-based aerogels are considered to be carriers that can absorb oils and organic solvents owing to the merits of low density and high surface area. However, the natural hydrophility and poor mechanical strength often obstruct their widespread applications. In this work, Miscanthus-based dual cross-linked lignocellulosic nanofibril (LCNF) aerogels were prepared by gas phase coagulation and methylene diphenyl dissocyanate (MDI) modification. Due to physical and chemical cross-linking strategies, the optimally 4 M-LCNF aerogels had high surface area of 157.9 m2/g, water contact angle of 138.1°, and enhanced compression properties. Moreover, the modified aerogels exhibited absorption performance for various organic solvents, and the maximal absorption capacity of chloroform was 42 g/g aerogel. Because LCNF was directly produced from Miscanthus without using bleaching reagents, this research provided a more sustainable methodology to utilize lignocelluloses to design robust aerogels to deal with the leakage of oil and organic solvents in industrial applications.


Assuntos
Lignina/química , Nanofibras/química , Géis/síntese química , Géis/química , Lignina/síntese química , Estrutura Molecular , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA