Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Immunol ; 15(8): 717-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952503

RESUMO

Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.


Assuntos
Imunidade Inata , Interferons/imunologia , Peroxissomos/imunologia , Animais , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Diferenciação Celular , Linhagem Celular , Cicloexanos/farmacologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Interferons/biossíntese , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Camundongos , Piridonas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Receptores Imunológicos , Reoviridae/imunologia , Infecções por Reoviridae/imunologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Tirfostinas/farmacologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599102

RESUMO

Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Assuntos
Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/metabolismo , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo
3.
Cell Microbiol ; 22(4): e13169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185898

RESUMO

By modifying the host cell transcription programme, pathogenic bacteria disrupt a wide range of cellular processes and take control of the host's immune system. Conversely, by mobilising a network of defence genes, the host cells trigger various responses that allow them to tolerate or eliminate invaders. The study of the molecular basis of this crosstalk is crucial to the understanding of infectious diseases. Although research has long focused on the targeting of eukaryotic DNA-binding transcription factors, more recently, another powerful way by which bacteria modify the expression of host genes has emerged: chromatin modifications in the cell nucleus. One of the most prolific bacterial models in this area has been Listeria monocytogenes, a facultative intracellular bacterium responsible for serious food-borne infections. Here, we aim to highlight the contribution of this model to the field of bacteria-mediated chromatin modifications. We will first recall the general principles of epigenetic regulation and then illustrate five mechanisms that mobilise the epigenetic machinery in response to Listeria factors, either through bacterial molecular patterns, a toxin, an invasion protein, or nucleomodulins. Strategies used by Listeria to control the expression of host genes at the chromatin level, by activation of cytosolic signalling pathways or direct targeting of epifactors in the nucleus, have contributed to the emergence of a new discipline combining cellular microbiology and epigenetics: "patho-epigenetics."


Assuntos
Cromatina , Epigênese Genética , Interações Hospedeiro-Patógeno/genética , Listeria monocytogenes/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fatores de Virulência
4.
PLoS Pathog ; 13(11): e1006734, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29190284

RESUMO

Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called "viable but non-culturable" state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy.


Assuntos
Células Epiteliais/metabolismo , Listeria monocytogenes , Listeriose/microbiologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Vacúolos
5.
PLoS Genet ; 12(3): e1005898, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938916

RESUMO

BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Nucleares/genética , Placentação/genética , Esteroides/metabolismo , Fatores de Transcrição/genética , Animais , Cromatina/genética , Proteínas Cromossômicas não Histona/biossíntese , Proteínas de Ligação a DNA , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/biossíntese , Placenta/metabolismo , Gravidez , Fatores de Transcrição/biossíntese , Transcriptoma/genética
6.
Curr Top Microbiol Immunol ; 404: 177-201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27025379

RESUMO

Bacterial surface proteins constitute an amazing repertoire of molecules with important functions such as adherence, invasion, signalling and interaction with the host immune system or environment. In Gram-positive bacteria, many surface proteins of the "LPxTG" family are anchored to the peptidoglycan (PG) by an enzyme named sortase. While this anchoring mechanism has been clearly deciphered, less is known about the spatial organization of cell wall-anchored proteins in the bacterial envelope. Here, we review the question of the precise spatial and temporal positioning of LPxTG proteins in subcellular domains in spherical and ellipsoid bacteria (Staphylococcus aureus, Streptococcus pyogenes, Streptococcus agalactiae and Enterococcus faecalis) and in the rod-shaped bacterium Listeria monocytogenes. Deposition at specific sites of the cell wall is a dynamic process tightly connected to cell division, secretion, cell morphogenesis and levels of gene expression. Studying spatial occupancy of these cell wall-anchored proteins not only provides information on PG dynamics in responses to environmental changes, but also suggests that pathogenic bacteria control the distribution of virulence factors at specific sites of the surface, including pole, septa or lateral sites, during the infectious process.


Assuntos
Proteínas de Bactérias/análise , Parede Celular/química , Bactérias Gram-Positivas/química , Motivos de Aminoácidos , Sinais Direcionadores de Proteínas/fisiologia
7.
PLoS Pathog ; 9(5): e1003381, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737746

RESUMO

Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been "murinized" to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlA(m)) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlA(m)-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlA(m)-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Caderinas/biossíntese , Mucosa Intestinal/metabolismo , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Animais , Proteínas de Bactérias/genética , Caderinas/genética , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Transgênicos
8.
Cell Microbiol ; 14(5): 622-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22289128

RESUMO

The nucleus, at the heart of the eukaryotic cell, hosts and protects the genetic material, governs gene expression and regulates the whole cell physiology, including cell division. A growing number of studies indicate that various animal and plant pathogenic bacteria can deliver factors to this central organelle to subvert host defences by directly interfering with transcription, chromatin-remodelling, RNA splicing or DNA replication and repair. Such bacterial molecules entering the nucleus, which we propose to term 'nucleomodulins', use diverse strategies to hijack nuclear processes by targeting host DNA or an array of nuclear proteins. In some cases, bacteria can even enter the nucleus. These bacterial 'nuclear attacks' might have permanent genetic or long-term epigenetic effects on the host. Studying nucleomodulins and endonuclear bacteria can thus generate new insights into long-term impacts of infectious diseases and create novel tools for biotechnological applications and for deciphering the regulation of nuclear dynamics.


Assuntos
Bactérias/patogenicidade , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , DNA Bacteriano/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Animais , Núcleo Celular/microbiologia , DNA Bacteriano/genética , Humanos , Modelos Biológicos , Plantas
9.
Proc Natl Acad Sci U S A ; 106(33): 13826-31, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666599

RESUMO

Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here we report the identification and characterization of a novel heterochromatinization factor in vertebrates, bromo adjacent homology domain-containing protein 1 (BAHD1). This nuclear protein interacts with HP1, MBD1, HDAC5, and several transcription factors. Through electron and immunofluorescence microscopy studies, we show that BAHD1 overexpression directs HP1 to specific nuclear sites and promotes the formation of large heterochromatic domains, which lack acetyl histone H4 and are enriched in H3 trimethylated at lysine 27 (H3K27me3). Furthermore, ectopically expressed BAHD1 colocalizes with the heterochromatic inactive X chromosome (Xi). The BAH domain is required for BAHD1 colocalization with H3K27me3, but not with the Xi chromosome. As highlighted by whole genome microarray analysis of BAHD1 knockdown cells, BAHD1 represses several proliferation and survival genes, in particular the insulin-like growth factor II gene (IGF2). When overexpressed, BAHD1 specifically binds the CpG-rich P3 promoter of IGF2, which increases MBD1 and HDAC5 targeting at this locus. This region contains DNA-binding sequences for the transcription factor SP1, with which BAHD1 coimmunoprecipitates. Collectively, these findings provide evidence that BAHD1 acts as a silencer by recruiting at specific promoters a set of proteins that coordinate heterochromatin assembly.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Inativação Gênica , Heterocromatina/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Cromatina/química , Mapeamento Cromossômico , Ilhas de CpG , Heterocromatina/metabolismo , Histonas/química , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Lisina/química , Microscopia de Fluorescência/métodos , Modelos Genéticos , Ligação Proteica , Estrutura Terciária de Proteína , Transcrição Gênica
10.
Front Cell Infect Microbiol ; 12: 849915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372114

RESUMO

Many bacterial species, including several pathogens, can enter a so-called "viable but non-culturable" (VBNC) state when subjected to stress. Bacteria in the VBNC state are metabolically active but have lost their ability to grow on standard culture media, which compromises their detection by conventional techniques based on bacterial division. Under certain conditions, VBNC bacteria can regain their growth capacity and, for pathogens, their virulence potential, through a process called resuscitation. Here, we review the current state of knowledge of the VBNC state of Listeria monocytogenes (Lm), a Gram-positive pathogenic bacterium responsible for listeriosis, one of the most dangerous foodborne zoonosis. After a brief summary of characteristics of VBNC bacteria, we highlight work on VBNC Lm in the environment and in agricultural and food industry settings, with particular emphasis on the impact of antimicrobial treatments. We subsequently discuss recent data suggesting that Lm can enter the VBNC state in the host, raising the possibility that VBNC forms contribute to the asymptomatic carriage of this pathogen in wildlife, livestock and even humans. We also consider the resuscitation and virulence potential of VBNC Lm and the danger posed by these bacteria to at-risk individuals, particularly pregnant women. Overall, we put forth the hypothesis that VBNC forms contribute to adaptation, persistence, and transmission of Lm between different ecological niches in the One-Health continuum, and suggest that screening for healthy carriers, using alternative techniques to culture-based enrichment methods, should better prevent listeriosis risks.


Assuntos
Listeria monocytogenes , Listeriose , Saúde Única , Animais , Feminino , Humanos , Listeriose/microbiologia , Gravidez , Virulência , Zoonoses
11.
Sci Rep ; 12(1): 21961, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535993

RESUMO

L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.


Assuntos
Proteínas de Ligação a RNA , Proteínas Supressoras de Tumor , Fatores de Virulência , Humanos , Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fatores de Virulência/metabolismo , Listeria monocytogenes
12.
Gut Microbes ; 14(1): 2058851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35373699

RESUMO

Enterococcus faecalis is a bacterial species present at a subdominant level in the human gut microbiota. This commensal turns into an opportunistic pathogen under specific conditions involving dysbiosis and host immune deficiency. E. faecalis is one of the rare pathobionts identified to date as contributing to liver damage in alcoholic liver disease. We have previously observed that E. faecalis is internalized in hepatocytes. Here, the survival and fate of E. faecalis was examined in hepatocytes, the main epithelial cell type in the liver. Although referred to as an extracellular pathogen, we demonstrate that E. faecalis is able to survive and divide in hepatocytes, and form intracellular clusters in two distinct hepatocyte cell lines, in primary mouse hepatocytes, as well as in vivo. This novel process extends to kidney cells. Unraveling the intracellular lifestyle of E. faecalis, our findings contribute to the understanding of pathobiont-driven diseases.


Assuntos
Enterococcus faecalis , Microbioma Gastrointestinal , Animais , Disbiose , Hepatócitos , Estilo de Vida , Camundongos
14.
Front Cell Infect Microbiol ; 12: 854242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531332

RESUMO

Staphylococcus aureus is an opportunistic pathogen that causes a range of devastating diseases including chronic osteomyelitis, which partially relies on the internalization and persistence of S. aureus in osteoblasts. The identification of the mechanisms of the osteoblast response to intracellular S. aureus is thus crucial to improve the knowledge of this infectious pathology. Since the signal from specifically infected bacteria-bearing cells is diluted and the results are confounded by bystander effects of uninfected cells, we developed a novel model of long-term infection. Using a flow cytometric approach we isolated only S. aureus-bearing cells from mixed populations that allows to identify signals specific to intracellular infection. Here we present an in-depth analysis of the effect of long-term S. aureus infection on the transcriptional program of human osteoblast-like cells. After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodeled transcriptomic profile of infected cells revealed exacerbated immune and inflammatory responses, as well as metabolic dysregulations that likely influence the intracellular life of bacteria. Numerous genes encoding epigenetic regulators were downregulated. The later included genes coding for components of chromatin-repressive complexes (e.g., NuRD, BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encoding proteins of cell adhesion or neurotransmission were also deregulated. Our results suggest that intracellular S. aureus infection has a long-term impact on the genome and epigenome of host cells, which may exert patho-physiological dysfunctions additionally to the defense response during the infection process. Overall, these results not only improve our conceptual understanding of biological processes involved in the long-term S. aureus infections of osteoblast-like cells, but also provide an atlas of deregulated host genes and biological pathways and identify novel markers and potential candidates for prophylactic and therapeutic approaches.


Assuntos
Osteomielite , Infecções Estafilocócicas , Epigênese Genética , Humanos , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Transcriptoma
15.
Microbiol Mol Biol Rev ; 71(2): 377-97, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17554049

RESUMO

The genome of the human food-borne pathogen Listeria monocytogenes is predicted to encode a high number of surface proteins. This abundance likely reflects the ability of this bacterium to survive in diverse environments, including soil, food, and the human host. This review focuses on the various mechanisms by which listerial proteins are attached at the bacterial surface and their many functions, including peptidoglycan metabolism, protein processing, adhesion to host cells, and invasion of host tissues. Extensive in silico analysis of the domains or motifs present in these mosaic proteins reveals that diverse structural features allow the surface proteome to interact with diverse bacterial or host components. This diversity offers new clues about the molecular bases of Listeria pathogenesis.


Assuntos
Proteínas de Bactérias/fisiologia , Genoma Bacteriano/fisiologia , Listeria monocytogenes/genética , Proteínas de Membrana/fisiologia , Proteínas de Bactérias/classificação , DNA Bacteriano/análise , Listeria monocytogenes/fisiologia , Proteínas de Membrana/classificação
16.
J Bacteriol ; 193(17): 4425-37, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21725001

RESUMO

Many virulence factors of Gram-positive bacterial pathogens are covalently anchored to the peptidoglycan (PG) by sortase enzymes. However, for rod-shaped bacteria little is known about the spatiotemporal organization of these surface proteins in the cell wall. Here we report the three-dimensional (3D) localization of the PG-bound virulence factors InlA, InlH, InlJ, and SvpA in the envelope of Listeria monocytogenes under different growth conditions. We found that all PG-anchored proteins are positioned along the lateral cell wall in nonoverlapping helices. However, these surface proteins can also become localized at the pole and asymmetrically distributed when specific regulatory pathways are activated. InlA and InlJ are enriched at poles when expressed at high levels in exponential-phase bacteria. InlA and InlH, which are σ(B)dependent, specifically relocalize to the septal cell wall and subsequently to the new pole in cells entering stationary phase. The accumulation of InlA and InlH in the septal region also occurs when oxidative stress impairs bacterial growth. In contrast, the iron-dependent protein SvpA is present at the old pole and is excluded from the septum and new pole of bacteria grown under low-iron conditions. We conclude that L. monocytogenes rapidly reorganizes the spatial localization of its PG proteins in response to changes in environmental conditions such as nutrient deprivation or other stresses. This dynamic control would distribute virulence factors at specific sites during the infectious process.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Parede Celular/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Immunoblotting , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Proteínas de Membrana/metabolismo , Conformação Molecular , Estresse Oxidativo , Fatores de Virulência/metabolismo
17.
PLoS Pathog ; 5(11): e1000675, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19956654

RESUMO

The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Animais , Bacillus cereus/química , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/patogenicidade , Linhagem Celular , Ferritinas , Heme , Hemoglobinas , Insetos , Lactoferrina , Transferrina
18.
Methods Mol Biol ; 2220: 201-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975777

RESUMO

The pathogen Listeria monocytogenes is a facultative intracellular bacterium, which targets a large range of cell types. Following entry, bacteria disrupt the invasion vacuole and reach the cytoplasm where they replicate and use the actin cytoskeleton to propel themselves from cell to cell. Mammalian epithelial cells grown in vitro can be used to study the different steps of the intracellular life of Listeria. However, rapid multiplication and dissemination of bacteria can induce important cell death and detachment, resulting in the formation of lytic plaques. Thus, in vitro infections with L. monocytogenes are usually restricted to short time courses, from a few minutes to one day. Here, we present a method to study long-term L. monocytogenes infections in epithelial cells using epifluorescence microscopy. This protocol enables the observation of actin-based motility, intercellular dissemination foci, and entrapment of L. monocytogenes within vacuoles of persistence termed "Listeria-Containing Vacuoles" (LisCVs). We also describe a protocol to study the recruitment of cytoskeletal proteins at Listeria actin comet tails, as well as a method to assess the membrane integrity of intracellular bacteria using a LIVE/DEAD viability assay.


Assuntos
Células Epiteliais/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/patologia , Microscopia de Fluorescência/métodos , Linhagem Celular , Proteínas do Citoesqueleto/análise , Células Epiteliais/patologia , Imunofluorescência/métodos , Interações Hospedeiro-Patógeno , Humanos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia
19.
Front Microbiol ; 12: 760253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721369

RESUMO

A mutant of Listeria monocytogenes ScottA with a transposon in the 5' untranslated region of the asnB gene was identified to be hypersensitive to the antimicrobial t-cinnamaldehyde. Here, we report the functional characterization of AsnB in peptidoglycan (PG) modification and intracellular infection. While AsnB of Listeria is annotated as a glutamine-dependent asparagine synthase, sequence alignment showed that this protein is closely related to a subset of homologs that catalyze the amidation of meso-diaminopimelic acid (mDAP) residues in the peptidoglycan of other bacterial species. Structural analysis of peptidoglycan from an asnB mutant, compared to that of isogenic wild-type (WT) and complemented mutant strains, confirmed that AsnB mediates mDAP amidation in L. monocytogenes. Deficiency in mDAP amidation caused several peptidoglycan- and cell surface-related phenotypes in the asnB mutant, including formation of shorter but thicker cells, susceptibility to lysozyme, loss of flagellation and motility, and a strong reduction in biofilm formation. In addition, the mutant showed reduced invasion of human epithelial JEG-3 and Caco-2 cells. Analysis by immunofluorescence microscopy revealed that asnB inactivation abrogated the proper display at the listerial surface of the invasion protein InlA, which normally gets cross-linked to mDAP via its LPXTG motif. Together, this work shows that AsnB of L. monocytogenes, like several of its homologs in related Gram-positive bacteria, mediates the amidation of mDAP residues in the peptidoglycan and, in this way, affects several cell wall and cell surface-related properties. It also for the first time implicates the amidation of peptidoglycan mDAP residues in cell wall anchoring of InlA and in bacterial virulence.

20.
Front Cell Infect Microbiol ; 11: 761945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858876

RESUMO

Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1ß). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Animais , Feminino , Hepatócitos , Humanos , Listeria monocytogenes/genética , Camundongos , Infecção Persistente , Gravidez , Secretoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA