Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885947

RESUMO

Silicoaluminophosphate molecular sieves of SAPO-11 type (AEL structure) were synthesized by the hydrothermal method, from the residue of a fluorescent lamp as a source or Si, Al, and P in the presence of water and di-propyamine (DPA) as an organic template. To adjust the P2O5/SiO2 and Si/Al and ratios, specific amounts of silica, alumina, or alumina hydroxide and orthophosphoric acid were added to obtain a gel with molar chemical composition 1.0 Al2O3:1.0 P2O5:1.2 DPA:0.3 SiO2:120 H2O. The syntheses were carried out at a temperature of 473 K at crystallization times of 24, 48, and 72 h. The fluorescent lamp residue and the obtained samples were characterized by X-ray fluorescence, X-ray diffraction, scanning electron microscopy, and BET surface area analysis using nitrogen adsorption isotherms. The presence of fluorapatite was detected as the main crystalline phase in the residue, jointly with considered amounts of silica, alumina, and phosphorus in oxide forms. The SAPO-11 prepared using aluminum hydroxide as Al source, P2O5/SiO2 molar ratio of 3.6 and Si/Al ratio of 0.14, at crystallization time of 72 h, achieves a yield of 75% with a surface area of 113 m2/g, showing that the residue from a fluorescent lamp is an alternative source for development of new materials based on Si, Al, and P.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957053

RESUMO

Mordenite is a well-known zeolite widely used for industrial processes. However, its pore architecture can be inconvenient due to diffusional issues. A study of the synthesis parameters from an organic-free dense gel was carried out to control the crystal morphology, which resulted in finned mordenite zeolite particles. The obtained materials were characterized by XRD, FTIR, 29Si and 27Al MAS-NMR, elemental analysis, nitrogen physisorption, SEM, and TEM. We found that careful manipulation of the hydrothermal parameters directly affected the sizes and morphologies of the crystallites and particles, as well as the textural properties of the final products. Additionally, it was found that mordenite could exhibit a fin morphology with additional mesoporosity, which is a promising means to reduce the diffusional problems of one-dimensional-channel zeolites.

3.
Materials (Basel) ; 14(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919393

RESUMO

In this memory effect study, hydrotalcite-type compounds in the lamellar double hydroxide-like (LDH)/zeolite A composite material were analyzed using X-Ray Diffration XRD) in situ experiments. Three samples were analyzed: Al,Mg-LDH, Al,Mg-LDH/ZA composite, and a physical mixture (50/50 wt%) of zeolite A and Al,Mg-LDH. The Al,Mg-LDH sample was treated at 500 °C in an O2 atmosphere and subsequently rehydrated. The Al,Mg-LDH/ZA composites had three treatments: one was performed at 300 °C in a He atmosphere, and two treatments were performed with an O2 atmosphere at 300 and 500 °C. In the physical mixture, two treatments were carried out under O2 flow at 500 °C and under He flow at 300 °C. Both went through the rehydration process. All samples were also analyzed by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The results show that the LDH phase in the Al,Mg-LDH/ZA compounds has memory effects, and thus, the compound can be calcined and rehydrated. For the LDH in the composite, the best heat treatment system is a temperature of 300 °C in an inert atmosphere.

4.
Materials (Basel) ; 12(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813262

RESUMO

Wastewater from the oil industry is a major problem for aqueous environments due to its complexity and estimated volume of approximately 250 million barrels per day. The combination of these petroleum pollutants creates risks to human health, and their removal from the environment is considered a major problem in the world today. Thus, this work has the objective of studying the treatment of this type of effluent through the adsorption method using the following exchange materials: cationic, anionic, their combination by a sequential method, and a composite material. Zeolite A, a layered double hydroxide (LDH), and the new composite material formed by zeolite A and LDH structures were synthesized for this study. All were used for the simultaneous treatment of cations and anions in a complex sample such as water produced from petroleum production. The composite demonstrated an excellent ability to simultaneously remove cations and anions. The results obtained after the different treatment modes of the effluent using different materials varied from 85% to 100% for the removal of cations and from 56% to 99.7% for the removal of anions.

5.
Chem Commun (Camb) ; 54(17): 2122-2125, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29419825

RESUMO

Here, we present the synthesis and structure determination of the new zeolite ITQ-62. Its structure was determined via ultra-fast electron diffraction tomography and refined using powder XRD data of the calcined material. This new zeolite contains a tridirectional channel system of highly distorted 8-rings, as well as a monodirectional 12-ring channel system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA