Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Hum Genet ; 111(3): 544-561, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38307027

RESUMO

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Aberrações Cromossômicas , Telômero/genética , DNA
2.
Nat Methods ; 20(10): 1483-1492, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37710018

RESUMO

Long-read sequencing technologies substantially overcome the limitations of short-reads but have not been considered as a feasible replacement for population-scale projects, being a combination of too expensive, not scalable enough or too error-prone. Here we develop an efficient and scalable wet lab and computational protocol, Napu, for Oxford Nanopore Technologies long-read sequencing that seeks to address those limitations. We applied our protocol to cell lines and brain tissue samples as part of a pilot project for the National Institutes of Health Center for Alzheimer's and Related Dementias. Using a single PromethION flow cell, we can detect single nucleotide polymorphisms with F1-score comparable to Illumina short-read sequencing. Small indel calling remains difficult within homopolymers and tandem repeats, but achieves good concordance to Illumina indel calls elsewhere. Further, we can discover structural variants with F1-score on par with state-of-the-art de novo assembly methods. Our protocol phases small and structural variants at megabase scales and produces highly accurate, haplotype-specific methylation calls.


Assuntos
Genoma Humano , Sequenciamento por Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Haplótipos , Metilação , Projetos Piloto , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695634

RESUMO

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Genoma Humano , Sequenciamento Completo do Genoma , Genótipo
4.
Brain ; 146(1): 65-74, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347471

RESUMO

Parkinson's disease is a complex neurodegenerative disorder with a strong genetic component, for which most known disease-associated variants are single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels). DNA repetitive elements account for >50% of the human genome; however, little is known of their contribution to Parkinson's disease aetiology. While select short tandem repeats (STRs) within candidate genes have been studied in Parkinson's disease, their genome-wide contribution remains unknown. Here we present the first genome-wide association study of STRs in Parkinson's disease. Through a meta-analysis of 16 imputed genome-wide association study cohorts from the International Parkinson's Disease Genomic Consortium (IPDGC), totalling 39 087 individuals (16 642 cases and 22 445 controls of European ancestry), we identified 34 genome-wide significant STR loci (P < 5.34 × 10-6), with the strongest signal located in KANSL1 [chr17:44 205 351:[T]11, P = 3 × 10-39, odds ratio = 1.31 (95% confidence interval = 1.26-1.36)]. Conditional-joint analyses suggested that four significant STRs mapping nearby NDUFAF2, TRIML2, MIRNA-129-1 and NCOR1 were independent from known risk SNPs. Including STRs in heritability estimates increased the variance explained by SNPs alone. Gene expression analysis of STRs (eSTRs) in RNA sequencing data from 13 brain regions identified significant associations of STRs influencing the expression of multiple genes, including known Parkinson's disease genes. Further functional annotation of candidate STRs revealed that significant eSTRs within NUDFAF2 and ZSWIM7 overlap with regulatory features and are associated with change in the expression levels of nearby genes. Here, we show that STRs at known and novel candidate loci contribute to Parkinson's disease risk and have functional effects in disease-relevant tissues and pathways, supporting previously reported disease-associated genes and giving further evidence for their functional prioritization. These data represent a valuable resource for researchers currently dissecting Parkinson's disease risk loci.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Genoma Humano , Polimorfismo de Nucleotídeo Único/genética , Repetições de Microssatélites/genética , Predisposição Genética para Doença/genética , Proteínas de Transporte/genética
5.
Brain ; 146(11): 4622-4632, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37348876

RESUMO

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Fatores de Risco , Frequência do Gene , Receptores Imunológicos
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732020

RESUMO

Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.


Assuntos
Predisposição Genética para Doença , Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Doença de Parkinson/genética , Humanos , Variação Genética , Estudo de Associação Genômica Ampla
7.
Mov Disord ; 38(12): 2249-2257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926948

RESUMO

BACKGROUND: Parkin RBR E3 ubiquitin-protein ligase (PRKN) mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E, which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. OBJECTIVES: To identify complex structural variants in PRKN using long-read sequencing. METHODS: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read sequencing. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of Accelerating Medicines Partnership Parkinson's disease (AMP-PD) and United Kingdom (UK)-Biobank datasets. RESULTS: Multiple ligation probe amplification identified a heterozygous exon three deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7 Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN expression. CONCLUSIONS: This is the first report describing a large 7 Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read sequencing for structural variant analysis in unresolved young-onset PD cases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Heterozigoto , Mutação/genética , Doença de Parkinson/genética , Transtornos Parkinsonianos/genética , Ubiquitina-Proteína Ligases/genética
8.
Mov Disord ; 35(11): 2056-2067, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32864809

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome-wide association studies. The most recent large-scale PD genome-wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome-wide association study locus. The objective of the current study was to create a tool that would display data for relevant PD risk loci and provide guidance with the prioritization of causal genes and potential mechanisms at each locus. METHODS: We included all significant genome-wide signals from multiple recent PD genome-wide association studies including themost recent PD risk genome-wide association study, age-at-onset genome-wide association study, progression genome-wide association study, and Asian population PD risk genome-wide association study. We gathered data for all genes 1 Mb up and downstream of each variant to allow users to assess which gene(s) are most associated with the variant of interest based on a set of self-ranked criteria. Multiple databases were queried for each gene to collect additional causal data. RESULTS: We created a PD genome-wide association study browser tool (https://pdgenetics.shinyapps.io/GWASBrowser/) to assist the PD research community with the prioritization of genes for follow-up functional studies to identify potential therapeutic targets. CONCLUSIONS: Our PD genome-wide association study browser tool provides users with a useful method of identifying potential causal genes at all known PD risk loci from large-scale PD genome-wide association studies. We plan to update this tool with new relevant data as sample sizes increase and new PD risk loci are discovered. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Idade de Início , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Doença de Parkinson/genética , Fatores de Risco
10.
Int J Mol Sci ; 21(19)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020390

RESUMO

Parkinson's disease (PD) is a complex disorder underpinned by both environmental and genetic factors. The latter only began to be understood around two decades ago, but since then great inroads have rapidly been made into deconvoluting the genetic component of PD. In particular, recent large-scale projects such as genome-wide association (GWA) studies have provided insight into the genetic risk factors associated with genetically ''complex'' PD (PD that cannot readily be attributed to single deleterious mutations). Here, we discuss the plethora of genetic information provided by PD GWA studies and how this may be utilized to generate polygenic risk scores (PRS), which may be used in the prediction of risk and trajectory of PD. We also comment on how pathway-specific genetic profiling can be used to gain insight into PD-related biological pathways, and how this may be further utilized to nominate causal PD genes and potentially druggable therapeutic targets. Finally, we outline the current limits of our understanding of PD genetics and the potential contribution of variation currently uncaptured in genetic studies, focusing here on uncatalogued structural variants.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Humanos , Doença de Parkinson/patologia , Fatores de Risco , Transdução de Sinais/genética
11.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187279

RESUMO

The hominid SINE-VNTR-Alu (SVA) retrotransposons represent a repertoire of genomic variation which could have significant effects on genome function. A human-specific SVA in the promoter region of the gene leucine-rich repeats and immunoglobulin-like domains 2 (LRIG2), which we termed SVA_LRIG2, is a common retrotransposon insertion polymorphism (RIP), defined as an element which is polymorphic for its presence or absence in the genome. We hypothesised that this RIP might be associated with differential levels of expression of LRIG2. The RIP genotype of SVA_LRIG2 was determined in a subset of frontal cortex DNA samples from the North American Brain Expression Consortium (NABEC) cohort and was imputed for a larger set of that cohort. Utilising available frontal cortex total RNA-seq and CpG methylation data for this cohort, we observed that increased allele dosage of SVA_LRIG2 was non-significantly associated with a decrease in transcription from the region and significantly associated with increased methylation of the CpG probe nearest to SVA_LRIG2, i.e., SVA_LRIG2 is a significant methylation quantitative trait loci (mQTL) at the LRIG2 locus. These data are consistent with SVA_LRIG2 being a transcriptional regulator, which in part may involve epigenetic modulation.


Assuntos
Elementos Alu/genética , Regulação da Expressão Gênica/genética , Glicoproteínas de Membrana/genética , Repetições Minissatélites/genética , Regiões Promotoras Genéticas/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Genoma Humano/genética , Humanos , Mutagênese Insercional/genética , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , Retroelementos/genética , Transcrição Gênica/genética
12.
Mov Disord ; 34(4): 460-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30675927

RESUMO

BACKGROUND: PD is a complex polygenic disorder. In recent years, several genes from the endocytic membrane-trafficking pathway have been suggested to contribute to disease etiology. However, a systematic analysis of pathway-specific genetic risk factors is yet to be performed. OBJECTIVES: To comprehensively study the role of the endocytic membrane-trafficking pathway in the risk of PD. METHODS: Linkage disequilibrium score regression was used to estimate PD heritability explained by 252 genes involved in the endocytic membrane-trafficking pathway including genome-wide association studies data from 18,869 cases and 22,452 controls. We used pathway-specific single-nucleotide polymorphisms to construct a polygenic risk score reflecting the cumulative risk of common variants. To prioritize genes for follow-up functional studies, summary-data based Mendelian randomization analyses were applied to explore possible functional genomic associations with expression or methylation quantitative trait loci. RESULTS: The heritability estimate attributed to endocytic membrane-trafficking pathway was 3.58% (standard error = 1.17). Excluding previously nominated PD endocytic membrane-trafficking pathway genes, the missing heritability was 2.21% (standard error = 0.42). Random heritability simulations were estimated to be 1.44% (standard deviation = 0.54), indicating that the unbiased total heritability explained by the endocytic membrane-trafficking pathway was 2.14%. Polygenic risk score based on endocytic membrane-trafficking pathway showed a 1.25 times increase of PD risk per standard deviation of genetic risk. Finally, Mendelian randomization identified 11 endocytic membrane-trafficking pathway genes showing functional consequence associated to PD risk. CONCLUSIONS: We provide compelling genetic evidence that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this pathway is warranted given that critical effort should be made to identify potential avenues within this biological process suitable for therapeutic interventions. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Endocitose/fisiologia , Doença de Parkinson/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco
14.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783611

RESUMO

Retrotransposons can alter the regulation of genes both transcriptionally and post-transcriptionally, through mechanisms such as binding transcription factors and alternative splicing of transcripts. SINE-VNTR-Alu (SVA) retrotransposons are the most recently evolved class of retrotransposable elements, found solely in primates, including humans. SVAs are preferentially found at genic, high GC loci, and have been termed "mobile CpG islands". We hypothesise that the ability of SVAs to mobilise, and their non-random distribution across the genome, may result in differential regulation of certain pathways. We analysed SVA distribution patterns across the human reference genome and identified over-representation of SVAs at zinc finger gene clusters. Zinc finger proteins are able to bind to and repress SVA function through transcriptional and epigenetic mechanisms, and the interplay between SVAs and zinc fingers has been proposed as a major feature of genome evolution. We describe observations relating to the clustering patterns of both reference SVAs and polymorphic SVA insertions at zinc finger gene loci, suggesting that the evolution of this network may be ongoing in humans. Further, we propose a mechanism to direct future research and validation efforts, in which the interplay between zinc fingers and their epigenetic modulation of SVAs may regulate a network of zinc finger genes, with the potential for wider transcriptional consequences.


Assuntos
Elementos Alu/genética , Genoma Humano/genética , Repetições Minissatélites/genética , Retroelementos/genética , Epigênese Genética/genética , Evolução Molecular , Humanos , Transcrição Gênica/genética , Dedos de Zinco/genética
16.
Sci Rep ; 14(1): 792, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191889

RESUMO

SINE-VNTR-Alu (SVA) retrotransposons represent mobile regulatory elements that have the potential to influence the surrounding genome when they insert into a locus. Evolutionarily recent mobilisation has resulted in loci in the human genome where a given retrotransposon might be observed to be present or absent, termed a retrotransposon insertion polymorphism (RIP). We previously observed that an SVA RIP ~ 2 kb upstream of LRIG2 on chromosome 1, the 'LRIG2 SVA', was associated with differences in local gene expression and methylation, and that the two were correlated. Here, we have used CRISPR-mediated deletion of the LRIG2 SVA in a cell line model to validate that presence of the retrotransposon is directly affecting local expression and provide evidence that is suggestive of a modest role for the SVA in modulating nearby methylation. Additionally, in leveraging an available Hi-C dataset we observed that the LRIG2 SVA was also involved in long-range chromatin interactions with a cluster of genes ~ 300 kb away, and that expression of these genes was to varying degrees associated with dosage of the SVA in both CRISPR cell line and population models. Altogether, these data support a regulatory role for SVAs in the modulation of gene expression, with the latter potentially involving chromatin looping, consistent with the model that RIPs may contribute to interpersonal differences in transcriptional networks.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Retroelementos , Humanos , Elementos Nucleotídeos Curtos e Dispersos , Cromatina , Expressão Gênica , Glicoproteínas de Membrana
17.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464144

RESUMO

DNA methylation most commonly occurs as 5-methylcytosine (5-mC) in the human genome and has been associated with human diseases. Recent developments in single-molecule sequencing technologies (Oxford Nanopore Technologies (ONT) and Pacific Biosciences) have enabled readouts of long, native DNA molecules, including cytosine methylation. ONT recently upgraded their Nanopore sequencing chemistry and kits from R9 to the R10 version, which yielded increased accuracy and sequencing throughput. However the effects on methylation detection have not yet been documented. Here we performed a series of computational analyses to characterize differences in Nanopore-based 5mC detection between the ONT R9 and R10 chemistries. We compared 5mC calls in R9 and R10 for three human genome datasets: a cell line, a frontal cortex brain sample, and a blood sample. We performed an in-depth analysis on CpG islands and homopolymer regions, and documented high concordance for methylation detection among sequencing technologies. The strongest correlation was observed between Nanopore R10 and Illumina bisulfite technologies for cell line-derived datasets. Subtle differences in methylation datasets between technologies can impact analysis tools such as differential methylation calling software. Our findings show that comparisons can be drawn between methylation data from different Nanopore chemistries using guided hypotheses. This work will facilitate comparison among Nanopore data cohorts derived using different chemistries from large scale sequencing efforts, such as the NIH CARD Long Read Initiative.

18.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746197

RESUMO

Background: PRKN biallelic pathogenic variants are the most common cause of autosomal recessive early-onset Parkinson's disease (PD). However, the variants responsible for suspected PRKN- PD individuals are not always identified with standard genetic testing. Objectives: Identify the genetic cause in two siblings with a PRKN -PD phenotype using long-read sequencing (LRS). Methods: The genetic investigation involved standard testing using successively multiple ligation probe amplification (MLPA), Sanger sequencing, targeted sequencing, whole-exome sequencing and LRS. Results: MLPA and targeted sequencing identified one copy of exon four in PRKN but no other variants were identified. Subsequently, LRS unveiled a large deletion encompassing exon 3 to 4 on one allele and a duplication of exon 3 on the second allele; explaining the siblings' phenotype. MLPA could not identify the balanced rearrangement of exon 3. Conclusions: This study highlights the potential utility of long-read sequencing in the context of unsolved typical PRKN- PD individuals.

19.
NPJ Parkinsons Dis ; 10(1): 108, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789445

RESUMO

A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson's disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson's Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.

20.
NPJ Parkinsons Dis ; 9(1): 54, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024536

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA