Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Antimicrob Agents Chemother ; 68(3): e0129123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259087

RESUMO

Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Malária Falciparum/parasitologia
2.
Mol Cell Proteomics ; 21(3): 100199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051657

RESUMO

Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these "histone codes" are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes.


Assuntos
Malária Falciparum , Parasitos , Animais , Código das Histonas , Histonas/metabolismo , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/metabolismo , Desenvolvimento Sexual
3.
Chembiochem ; 23(21): e202200427, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36106425

RESUMO

Malaria elimination requires multipronged approaches, including the application of antimalarial drugs able to block human-to-mosquito transmission of malaria parasites. The transmissible gametocytes of Plasmodium falciparum seem to be highly sensitive towards epidrugs, particularly those targeting demethylation of histone post-translational marks. Here, we report exploration of compounds from a chemical library generated during hit-to-lead optimization of inhibitors of the human histone lysine demethylase, KDM4B. Derivatives of 2-([1,1'-biphenyl]-4-carboxamido) benzoic acid, around either the amide or a sulfonamide linker backbone (2-(arylcarboxamido)benzoic acid, 2-carboxamide (arylsulfonamido)benzoic acid and N-(2-(1H-tetrazol-5-yl)phenyl)-arylcarboxamide), showed potent activity towards late-stage gametocytes (stage IV/V) of P. falciparum, with the most potent compound reaching single digit nanomolar activity. Structure-activity relationship trends were evident and frontrunner compounds also displayed microsomal stability and favourable solubility profiles. Simplified synthetic routes support further derivatization of these compounds for further development of these series as malaria transmission-blocking agents.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Ácido Benzoico , Plasmodium falciparum , Malária Falciparum/parasitologia , Histona Desmetilases com o Domínio Jumonji
4.
Malar J ; 21(1): 97, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305668

RESUMO

BACKGROUND: Malaria is a devastating disease, transmitted by female Anopheles mosquitoes infected with Plasmodium parasites. Current insecticide-based strategies exist to control the spread of malaria by targeting vectors. However, the increase in insecticide resistance in vector populations hinder the efficacy of these methods. It is, therefore, essential to develop novel vector control methods that efficiently target transmission reducing factors such as vector density and competence. A possible vector control candidate gene, the ecdysone receptor, regulates longevity, reproduction, immunity and other physiological processes in several insects, including malaria vectors. Anopheles funestus is a prominent vector in sub-Saharan Africa, however, the function of the ecdysone receptor in this mosquito has not previously been studied. This study aimed to determine if the ecdysone receptor depletion impacts An. funestus longevity, reproduction and susceptibility to Plasmodium falciparum infection. METHODS: RNA interference was used to reduce ecdysone receptor expression levels in An. funestus females and investigate how the above-mentioned phenotypes are influenced. Additionally, the expression levels of the ecdysone receptor, and reproduction genes lipophorin and vitellogenin receptor as well as the immune gene, leucine rich immune molecule 9 were determined in ecdysone receptor-depleted mosquitoes using quantitative polymerase chain reaction. RESULTS: Ecdysone receptor-depleted mosquitoes had a shorter lifespan, impaired oogenesis, were less fertile, and had reduced P. falciparum infection intensity. CONCLUSIONS: Overall, this study provides the first experimental evidence that supports ecdysone receptor as a potential target in the development of vector control measures targeting An. funestus.


Assuntos
Anopheles , Receptores de Esteroides , Animais , Anopheles/fisiologia , Feminino , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Receptores de Esteroides/genética
5.
Malar J ; 20(1): 317, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261498

RESUMO

BACKGROUND: Gene Regulatory Networks (GRN) produce powerful insights into transcriptional regulation in cells. The power of GRNs has been underutilized in malaria research. The Arboreto library was incorporated into a user-friendly web-based application for malaria researchers ( http://malboost.bi.up.ac.za ). This application will assist researchers with gaining an in depth understanding of transcriptomic datasets. METHODS: The web application for MALBoost was built in Python-Flask with Redis and Celery workers for queue submission handling, which execute the Arboreto suite algorithms. A submission of 5-50 regulators and total expression set of 5200 genes is permitted. The program runs in a point-and-click web user interface built using Bootstrap4 templates. Post-analysis submission, users are redirected to a status page with run time estimates and ultimately a download button upon completion. Result updates or failure updates will be emailed to the users. RESULTS: A web-based application with an easy-to-use interface is presented with a use case validation of AP2-G and AP2-I. The validation set incorporates cross-referencing with ChIP-seq and transcriptome datasets. For AP2-G, 5 ChIP-seq targets were significantly enriched with seven more targets presenting with strong evidence of validated targets. CONCLUSION: The MALBoost application provides the first tool for easy interfacing and efficiently allows gene regulatory network construction for Plasmodium. Additionally, access is provided to a pre-compiled network for use as reference framework. Validation for sexually committed ring-stage parasite targets of AP2-G, suggests the algorithm was effective in resolving "traditionally" low-level signatures even in bulk RNA datasets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Plasmodium falciparum/genética , Software , Biologia Computacional , Internet , Malária/parasitologia
6.
Malar J ; 20(1): 96, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593382

RESUMO

BACKGROUND: South Africa aims to eliminate malaria transmission by 2023. However, despite sustained vector control efforts and case management interventions, the Vhembe District remains a malaria transmission hotspot. To better understand Plasmodium falciparum transmission dynamics in the area, this study characterized the genetic diversity of parasites circulating within the Vhembe District. METHODS: A total of 1153 falciparum-positive rapid diagnostic tests (RDTs) were randomly collected from seven clinics within the district, over three consecutive years (2016, 2017 and 2018) during the wet and dry malaria transmission seasons. Using 26 neutral microsatellite markers, differences in genetic diversity were described using a multiparameter scale of multiplicity of infection (MOI), inbreeding metric (Fws), number of unique alleles (A), expected heterozygosity (He), multilocus linkage disequilibrium (LD) and genetic differentiation, and were associated with temporal and geospatial variances. RESULTS: A total of 747 (65%) samples were successfully genotyped. Moderate to high genetic diversity (mean He = 0.74 ± 0.03) was observed in the parasite population. This was ascribed to high allelic richness (mean A = 12.2 ± 1.2). The majority of samples (99%) had unique multi-locus genotypes, indicating high genetic diversity in the sample set. Complex infections were observed in 66% of samples (mean MOI = 2.13 ± 0.04), with 33% of infections showing high within-host diversity as described by the Fws metric. Low, but significant LD (standardised index of association, ISA = 0.08, P < 0.001) was observed that indicates recombination of distinct clones. Limited impact of temporal (FST range - 0.00005 to 0.0003) and spatial (FST = - 0.028 to 0.023) variation on genetic diversity existed during the sampling timeframe and study sites respectively. CONCLUSIONS: Consistent with the Vhembe District's classification as a 'high' transmission setting within South Africa, P. falciparum diversity in the area was moderate to high and complex. This study showed that genetic diversity within the parasite population reflects the continued residual transmission observed in the Vhembe District. This data can be used as a reference point for the assessment of the effectiveness of on-going interventions over time, the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance.


Assuntos
Variação Genética , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , África do Sul , Adulto Jovem
7.
Biomacromolecules ; 21(12): 5053-5066, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33156615

RESUMO

The concepts of polymer-peptide conjugation and self-assembly were applied to antimicrobial peptides (AMPs) in the development of a targeted antimalaria drug delivery construct. This study describes the synthesis of α-acetal, ω-xanthate heterotelechelic poly(N-vinylpyrrolidone) (PVP) via reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization, followed by postpolymerization deprotection to yield α-aldehyde, ω-thiol heterotelechelic PVP. A specific targeting peptide, GSRSKGT, for Plasmodium falciparum-infected erythrocytes was used to sparsely decorate the α-chain ends via reductive amination while cyclic decapeptides from the tyrocidine group were conjugated to the ω-chain end via thiol-ene Michael addition. The resultant constructs were self-assembled into micellar nanoaggregates whose sizes and morphologies were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro activity and selectivity of the conjugates were evaluated against intraerythrocytic P. falciparum parasites.


Assuntos
Peptídeos , Pirrolidinonas , Antimaláricos/administração & dosagem , Sistemas de Liberação de Medicamentos , Polimerização , Polímeros
8.
Malar J ; 19(1): 152, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295590

RESUMO

BACKGROUND: KwaZulu-Natal, one of South Africa's three malaria endemic provinces, is nearing malaria elimination, reporting fewer than 100 locally-acquired cases annually since 2010. Despite sustained implementation of essential interventions, including annual indoor residual spraying, prompt case detection using malaria rapid diagnostics tests and treatment with effective artemisinin-based combination therapy, low-level focal transmission persists in the province. This malaria prevalence and entomological survey was therefore undertaken to identify the drivers of this residual transmission. METHODS: Malaria prevalence as well as malaria knowledge, attitudes and practices among community members and mobile migrant populations within uMkhanyakude district, KwaZulu-Natal were assessed during a community-based malaria prevalence survey. All consenting participants were tested for malaria by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Finger-prick filter-paper blood spots were also collected from all participants for downstream parasite genotyping analysis. Entomological investigations were conducted around the surveyed households, with potential breeding sites geolocated and larvae collected for species identification and insecticide susceptibility testing. A random selection of households were assessed for indoor residual spray quality by cone bioassay. RESULTS: A low malaria prevalence was confirmed in the study area, with only 2% (67/2979) of the participants found to be malaria positive by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Malaria prevalence however differed markedly between the border market and community (p < 0001), with the majority of the detected malaria carriers (65/67) identified as asymptomatic Mozambican nationals transiting through the informal border market from Mozambique to economic hubs within South Africa. Genomic analysis of the malaria isolates revealed a high degree of heterozygosity and limited genetic relatedness between the isolates supporting the hypothesis of limited local malaria transmission within the province. New potential vector breeding sites, potential vector populations with reduced insecticide susceptibility and areas with sub-optimal vector intervention coverage were identified during the entomological investigations. CONCLUSION: If KwaZulu-Natal is to successfully halt local malaria transmission and prevent the re-introduction of malaria, greater efforts need to be placed on detecting and treating malaria carriers at both formal and informal border crossings with transmission blocking anti-malarials, while ensuring optimal coverage of vector control interventions is achieved.


Assuntos
Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/transmissão , Malária/epidemiologia , Malária/transmissão , Infecções Assintomáticas/epidemiologia , Erradicação de Doenças , Doenças Endêmicas/estatística & dados numéricos , Humanos , Prevalência , África do Sul/epidemiologia
9.
BMC Genomics ; 20(1): 920, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795940

RESUMO

BACKGROUND: Malaria pathogenesis relies on sexual gametocyte forms of the malaria parasite to be transmitted between the infected human and the mosquito host but the molecular mechanisms controlling gametocytogenesis remains poorly understood. Here we provide a high-resolution transcriptome of Plasmodium falciparum as it commits to and develops through gametocytogenesis. RESULTS: The gametocyte-associated transcriptome is significantly different from that of the asexual parasites, with dynamic gene expression shifts characterizing early, intermediate and late-stage gametocyte development and results in differential timing for sex-specific transcripts. The transcriptional dynamics suggest strict transcriptional control during gametocytogenesis in P. falciparum, which we propose is mediated by putative regulators including epigenetic mechanisms (driving active repression of proliferation-associated processes) and a cascade-like expression of ApiAP2 transcription factors. CONCLUSIONS: The gametocyte transcriptome serves as the blueprint for sexual differentiation and will be a rich resource for future functional studies on this critical stage of Plasmodium development, as the intraerythrocytic transcriptome has been for our understanding of the asexual cycle.


Assuntos
Gametogênese/genética , Regulação da Expressão Gênica , Plasmodium falciparum/genética , Transcrição Gênica , Células Germinativas/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Reprodução/genética , Reprodução Assexuada/genética , Diferenciação Sexual/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Malar J ; 18(1): 65, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849984

RESUMO

BACKGROUND: Optimal adoption of the malaria transmission-blocking strategy is currently limited by lack of safe and efficacious drugs. This has sparked the exploration of different sources of drugs in search of transmission-blocking agents. While plant species have been extensively investigated in search of malaria chemotherapeutic agents, comparatively less effort has been channelled towards exploring them in search of transmission-blocking drugs. Artemisia afra (Asteraceae), a prominent feature of South African folk medicine, is used for the treatment of a number of diseases, including malaria. In search of transmission-blocking compounds aimed against Plasmodium parasites, the current study endeavoured to isolate and identify gametocytocidal compounds from A. afra. METHODS: A bioassay-guided isolation approach was adopted wherein a combination of solvent-solvent partitioning and gravity column chromatography was used. Collected fractions were continuously screened in vitro for their ability to inhibit the viability of primarily late-stage gametocytes of Plasmodium falciparum (NF54 strain), using a parasite lactate dehydrogenase assay. Chemical structures of isolated compounds were elucidated using UPLC-MS/MS and NMR data analysis. RESULTS: Two guaianolide sesquiterpene lactones, 1α,4α-dihydroxybishopsolicepolide and yomogiartemin, were isolated and shown to be active (IC50 < 10 µg/ml; ~ 10 µM) against both gametocytes and intra-erythrocytic asexual P. falciparum parasites. Interestingly, 1α,4α-dihydroxybishopsolicepolide was significantly more potent against late-stage gametocytes than to early-stage gametocytes and intra-erythrocytic asexual P. falciparum parasites. Additionally, both isolated compounds were not overly cytotoxic against HepG2 cells in vitro. CONCLUSION: This study provides the first instance of isolated compounds from A. afra against P. falciparum gametocytes as a starting point for further investigations on more plant species in search of transmission-blocking compounds.


Assuntos
Antiprotozoários/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem
11.
Artigo em Inglês | MEDLINE | ID: mdl-29866868

RESUMO

The emergence of resistance toward artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, the development of new artemisinins in combination with new drugs that impart activities toward both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular, those of resistant parasites, is urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives toward the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes, in the low-nanomolar range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displayed notable synergism. These data suggest that modulation of redox homeostasis is likely an important druggable process, particularly in gametocytes, and this finding thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sinergismo Farmacológico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-29941635

RESUMO

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

13.
J Antimicrob Chemother ; 73(5): 1279-1290, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420756

RESUMO

Objectives: Novel chemical tools to eliminate malaria should ideally target both the asexual parasites and transmissible gametocytes. Several imidazopyridazines (IMPs) and 2-aminopyridines (2-APs) have been described as potent antimalarial candidates targeting lipid kinases. However, these have not been extensively explored for stage-specific inhibition of gametocytes in Plasmodium falciparum parasites. Here we provide an in-depth evaluation of the gametocytocidal activity of compounds from these chemotypes and identify novel starting points for dual-acting antimalarials. Methods: We evaluated compounds against P. falciparum gametocytes using several assay platforms for cross-validation and stringently identified hits that were further profiled for stage specificity, speed of action and ex vivo efficacy. Physicochemical feature extraction and chemogenomic fingerprinting were applied to explore the kinase inhibition susceptibility profile. Results: We identified 34 compounds with submicromolar activity against late stage gametocytes, validated across several assay platforms. Of these, 12 were potent at <100 nM (8 were IMPs and 4 were 2-APs) and were also active against early stage gametocytes and asexual parasites, with >1000-fold selectivity towards the parasite over mammalian cells. Front-runner compounds targeted mature gametocytes within 48 h and blocked transmission to mosquitoes. The resultant chemogenomic fingerprint of parasites treated with the lead compounds revealed the importance of targeting kinases in asexual parasites and gametocytes. Conclusions: This study encompasses an in-depth evaluation of the kinase inhibitor space for gametocytocidal activity. Potent lead compounds have enticing dual activities and highlight the importance of targeting the kinase superfamily in malaria elimination strategies.


Assuntos
Aminopiridinas/farmacologia , Antimaláricos/farmacologia , Fosfotransferases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/química , Aminopiridinas/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Plasmodium falciparum/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação
14.
Malar J ; 17(1): 120, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558929

RESUMO

BACKGROUND: Primaquine (PQ) is recommended as an addition to standard malaria treatments in pre-elimination settings due to its pronounced activity against mature Plasmodium falciparum gametocytes, the parasite stage responsible for onward transmission to mosquitoes. However, PQ may trigger haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. Additional human genetic factors, including polymorphisms in the human cytochrome P450 2D6 (CYP2D6) complex, may negatively influence the efficacy of PQ. This study assessed the prevalence of G6PD deficiency and two important CYP2D6 variants in representative pre-elimination settings in South Africa, to inform malaria elimination strategies. METHODS: Volunteers (n = 248) attending six primary health care facilities in a malaria-endemic region of South Africa were enrolled between October and November 2015. G6PD status was determined phenotypically, using a CareStart™ G6PD rapid diagnostic test (RDT), and genotypically for two common African G6PD variants, namely A+ (A376G) and A- (G202A, A542T, G680T & T968C) by PCR, restriction fragment length polymorphisms (RFLP) and DNA sequencing. CYP2D6*4 and CYP2D6*17 variants were determined with PCR and RFLP. RESULTS: A prevalence of 13% (33/248) G6PD deficiency was observed in the cohort by G6PD RDT whilst by genotypic assessment, 32% (79/248) were A+ and 3.2% were A-, respectively. Among the male participants, 11% (6/55) were G6PD A- hemizygous; among females 1% (2/193) were G6PD A- homozygous and 16% (32/193) G6PD A- heterozygous. The strength of agreement between phenotyping and genotyping result was fair (Cohens Kappa κ = 0.310). The negative predictive value for the G6PD RDT for detecting hemizygous, homozygous and heterozygous individuals was 0.88 (95% CI 0.85-0.91), compared to the more sensitive genotyping. The CYP2D6*4 allele frequencies for CYP2D6*4 (inferred poor metabolizer phenotype) and CYP2D6*17 (inferred intermediate metabolizer phenotype) were 3.2 and 19.5%, respectively. CONCLUSIONS: Phenotypic and genotypic analyses both detected low prevalence of G6PD deficiency and the CYP2D6*4 variants. These findings, combined with increasing data confirming safety of single low-dose PQ in individuals with African variants of G6PD deficiency, supports the deployment of single low-dose PQ as a gametocytocidal drug. PQ would pose minimal risks to the study populations and could be a useful elimination strategy in the study area.


Assuntos
Glucosefosfato Desidrogenase/genética , Primaquina/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , África do Sul/epidemiologia , Adulto Jovem
15.
Bioorg Med Chem Lett ; 28(19): 3161-3163, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30174153

RESUMO

Artemisinin-ferrocene conjugates incorporating a 1,2-disubstituted ferrocene analogous to that embedded in ferroquine but attached via a piperazine linker to C10 of the artemisinin were prepared from the piperazine artemisinin derivative, and activities were evaluated against asexual blood stages of chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf). The most active was the morpholino derivative 5 with IC50 of 0.86 nM against Pf K1 and 1.4 nM against Pf W2. The resistance indices were superior to those of current clinical artemisinins. Notably, the compounds were active against Pf NF54 early and late blood stage gametocytes - these exerted >86% inhibition at 1 µM against both stages; they are thus appreciably more active than methylene blue (∼57% inhibition at 1 µM) against late stage gametocytes. The data portends transmission blocking activity. Cytotoxicity was determined against human embryonic kidney cells (Hek293), while human malignant melanoma cells (A375) were used to assess their antitumor activity.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Artemisininas/química , Compostos Ferrosos/química , Metalocenos/química , Plasmodium falciparum/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Concentração Inibidora 50 , Malária Falciparum/transmissão
16.
Bioorg Med Chem Lett ; 28(3): 289-292, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317166

RESUMO

Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Citotoxinas/farmacologia , Compostos Ferrosos/farmacologia , Metalocenos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/toxicidade , Artemisininas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/toxicidade , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Células HEK293 , Humanos , Metalocenos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 26(13): 3006-3009, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27210430

RESUMO

As part of a programme aimed at identifying rational new triple drug combinations for treatment of malaria, tuberculosis and toxoplasmosis, we have selected quinolones as one component, given that selected examples exhibit exceptionally good activities against the causative pathogens of the foregoing diseases. The quinolone decoquinate (DQ), an old and inexpensive coccidiostat, displays anti-malarial activity in vitro against Plasmodium falciparum (Pf). However, because of its exceedingly poor solubility in water or organic solvents, development of DQ as a drug is problematical. We have therefore converted DQ in straightforward fashion into tractable new derivatives that display good activities in vitro against chloroquine-sensitive NF54 and multidrug-resistant K1 and W2 Pf, and relatively low toxicities against human fibroblast cells. The most active compound, the N-acetyl derivative 30, is 5-fold more active than DQ against NF54 and K1 and equipotent with DQ against W2. It possesses an activity profile against all strains comparable with that of the artemisinin derivative artesunate. Overall, this compound and the other accessible and active derivatives serve as an attractive template for development of new and economic lead quinolones.


Assuntos
Antimaláricos/farmacologia , Decoquinato/análogos & derivados , Decoquinato/farmacologia , Quinolonas/farmacologia , Antimaláricos/síntese química , Antimaláricos/toxicidade , Artemeter , Artemisininas/farmacologia , Artesunato , Decoquinato/síntese química , Decoquinato/toxicidade , Resistência a Múltiplos Medicamentos , Emetina/farmacologia , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Quinolonas/síntese química , Quinolonas/toxicidade
18.
Malar J ; 14: 54, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651815

RESUMO

BACKGROUND: Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It's resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human pathway making it an attractive target for chemotherapeutic development. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). The most potent inhibitors of eukaryotic SpdS's are not specific for PfSpdS. METHODS: 'Dynamic' receptor-based pharmacophore models were generated from published crystal structures of SpdS with different ligands. This approach takes into account the inherent flexibility of the active site, which reduces the entropic penalties associated with ligand binding. Four dynamic pharmacophore models were developed and two inhibitors, (1R,4R)-(N1-(3-aminopropyl)-trans-cyclohexane-1,4-diamine (compound 8) and an analogue, N-(3-aminopropyl)-cyclohexylamine (compound 9), were identified. RESULTS: A crystal structure containing compound 8 was solved and confirmed the in silico prediction that its aminopropyl chain traverses the catalytic centre in the presence of the byproduct of catalysis, 5'-methylthioadenosine. The IC50 value of compound 9 is in the same range as that of the most potent inhibitors of PfSpdS, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and 4MCHA and 100-fold lower than that of compound 8. Compound 9 was originally identified as a mammalian spermine synthase inhibitor and does not inhibit mammalian SpdS. This implied that these two compounds bind in an orientation where their aminopropyl chains face the putrescine binding site in the presence of the substrate, decarboxylated S-adenosylmethionine. The higher binding affinity and lower receptor strain energy of compound 9 compared to compound 8 in the reversed orientation explained their different IC50 values. CONCLUSION: The specific inhibition of PfSpdS by compound 9 is enabled by its binding in the additional cavity normally occupied by spermidine when spermine is synthesized. This is the first time that a spermine synthase inhibitor is shown to inhibit PfSpdS, which provides new avenues to explore for the development of novel inhibitors of PfSpdS.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/enzimologia , Espermidina Sintase/antagonistas & inibidores , Antimaláricos/química , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Ligação Proteica
19.
Malar J ; 14: 213, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25994518

RESUMO

BACKGROUND: The discovery of malaria transmission-blocking compounds is seen as key to malaria elimination strategies and gametocyte-screening platforms are critical filters to identify active molecules. However, unlike asexual parasite assays measuring parasite proliferation, greater variability in end-point readout exists between different gametocytocidal assays. This is compounded by difficulties in routinely producing viable, functional and stage-specific gametocyte populations. Here, a parallel evaluation of four assay platforms on the same gametocyte populations was performed for the first time. This allowed the direct comparison of the ability of different assay platforms to detect compounds with gametocytocidal activity and revealed caveats in some assay readouts that interrogate different parasite biological functions. METHODS: Gametocytogenesis from Plasmodium falciparum (NF54) was optimized with a robust and standardized protocol. ATP, pLDH, luciferase reporter and PrestoBlue® assays were compared in context of a set of 10 reference compounds. The assays were performed in parallel on the same gametocyte preparation (except for luciferase reporter lines) using the same drug preparations (48 h). The remaining parameters for each assay were all comparable. RESULTS: A highly robust method for generating viable and functional gametocytes was developed and comprehensively validated resulting in an average gametocytaemia of 4%. Subsequent parallel assays for gametocytocidal activity indicated that different assay platforms were not able to screen compounds with variant chemical scaffolds similarly. Luciferase reporter assays revealed that synchronized stage-specific gametocyte production is essential for drug discovery, as differential susceptibility in various gametocyte developmental populations is evident. CONCLUSIONS: With this study, the key parameters for assays aiming at testing the gametocytocidal activity of potential transmission blocking molecules against Plasmodium gametocytes were accurately dissected. This first and uniquely comparative study emphasizes differential effects seen with the use of different assay platforms interrogating variant biological systems. Whilst this data is informative from a biological perspective and may provide indications of the drug mode of action, it does highlight the care that must be taken when screening broad-diversity chemotypes with a single assay platform against gametocytes for which the biology is not clearly understood.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Malária/prevenção & controle , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos , Erradicação de Doenças
20.
Bioorg Med Chem ; 23(16): 5131-43, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25684422

RESUMO

A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites.


Assuntos
Antimaláricos/química , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Poliaminas/química , Tioureia/análogos & derivados , Ureia/análogos & derivados , Alquilação , Antimaláricos/farmacologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Poliaminas/farmacologia , Relação Estrutura-Atividade , Tioureia/farmacologia , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA