Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Sens J ; 22(24): 24493-24503, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497077

RESUMO

A flexible fiber-coupled confocal laser endomicroscope has been developed using an electrostatic micro-electromechanical system (MEMS) scanner located in at distal optics to collect in vivo images in human subjects. Long transmission lines are required that deliver drive and sense signals with limited bandwidth. Phase shifts have been observed between orthogonal X and Y scanner axes from environmental perturbations, which impede image reconstruction. Image processing algorithms used for correction depend on image content and quality, while scanner calibration in the clinic can be limited by potential patient exposure to lasers. We demonstrate a capacitive sensing method to track the motion of the electrostatically driven two-dimensional MEMS scanner and to extract phase information needed for image reconstruction. This circuit uses an amplitude modulation envelope detection method on shared drive and sensing electrodes of the scanner. Circuit parameters were optimized for performance given high scan frequencies, transmission line effects, and substantial parasitic coupling of drive signal to circuit output. Extraction of phase information further leverages nonlinear dynamics of the MEMS scanner. The sensing circuit was verified by comparing with data from a position sensing detector measurement. The phase estimation showed an accuracy of 2.18° and 0.79° in X and Y axes for motion sensing, respectively. The results indicate that the sensing circuit can be implemented with feedback control for pre-calibration of the scanner in clinical MEMS-based imaging systems.

2.
Sci Rep ; 12(1): 20155, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418439

RESUMO

Confocal laser endomicroscopy is an emerging methodology to perform real time optical biopsy. Fluorescence images with histology-like quality can be collected instantaneously from the epithelium of hollow organs. Currently, scanning is performed at the proximal end of probe-based instruments used routinely in the clinic, and flexibility to control the focus is limited. We demonstrate use of a parametric resonance scanner packaged in the distal end of the endomicroscope to perform high speed lateral deflections. An aperture was etched in the center of the reflector to fold the optical path. This design reduced the dimensions of the instrument to 2.4 mm diameter and 10 mm length, allowing for forward passage through the working channel of a standard medical endoscope. A compact lens assembly provides lateral and axial resolution of 1.1 and 13.6 µm, respectively. A working distance of 0 µm and field-of-view of 250 µm × 250 µm was achieved at frame rates up to 20 Hz. Excitation at 488 nm was delivered to excite fluorescein, an FDA-approved dye, to generate high tissue contrast. The endomicroscope was reprocessed using a clinically-approved sterilization method for 18 cycles without failure. Fluorescence images were collected during routine colonoscopy from normal colonic mucosa, tubular adenomas, hyperplastic polyps, ulcerative colitis, and Crohn's colitis. Individual cells, including colonocytes, goblet cells, and inflammatory cells, could be identified. Mucosal features, such as crypt structures, crypt lumens, and lamina propria, could be distinguished. This instrument has potential to be used as an accessory during routine medical endoscopy.


Assuntos
Colite Ulcerativa , Lentes , Sistemas Microeletromecânicos , Humanos , Lasers , Técnicas Histológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA