Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(5): 1324-1337.e11, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565352

RESUMO

Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles.


Assuntos
Redes e Vias Metabólicas , Metaboloma , Mitocôndrias/metabolismo , Transporte de Elétrons/genética , Células HeLa , Humanos , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia
2.
Mol Cell ; 83(6): 877-889, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931256

RESUMO

Mitochondria are membrane-enclosed organelles with endosymbiotic origins, harboring independent genomes and a unique biochemical reaction network. To perform their critical functions, mitochondria must maintain a distinct biochemical environment and coordinate with the cytosolic metabolic networks of the host cell. This coordination requires them to sense and control metabolites and respond to metabolic stresses. Indeed, mitochondria adopt feedback or feedforward control strategies to restrain metabolic toxicity, enable metabolic conservation, ensure stable levels of key metabolites, allow metabolic plasticity, and prevent futile cycles. A diverse panel of metabolic sensors mediates these regulatory circuits whose malfunctioning leads to inborn errors of metabolism with mild to severe clinical manifestations. In this review, we discuss the logic and molecular basis of metabolic sensing and control in mitochondria. The past research outlined recurring patterns in mitochondrial metabolic sensing and control and highlighted key knowledge gaps in this organelle that are potentially addressable with emerging technological breakthroughs.


Assuntos
Mitocôndrias , Organelas , Mitocôndrias/metabolismo , Organelas/metabolismo , Redes e Vias Metabólicas
3.
Cell ; 162(3): 540-51, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232224

RESUMO

The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation.


Assuntos
Ácido Aspártico/biossíntese , Proliferação de Células , Transporte de Elétrons , Mitocôndrias/metabolismo , Aspartato Aminotransferase Citoplasmática/metabolismo , Ácido Aspártico/metabolismo , DNA Mitocondrial/genética , Humanos , Células Jurkat , Mutação , Fenformin/farmacologia , Ácido Pirúvico/metabolismo
4.
Nature ; 629(8012): 710-716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693265

RESUMO

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Assuntos
Colina , Etanolamina , Proteínas de Membrana Transportadoras , Humanos , Sítios de Ligação , Transporte Biológico/genética , Colina/química , Colina/metabolismo , Etanolamina/química , Etanolamina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosforilação , Mutagênese
5.
Nature ; 633(8029): 451-458, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112706

RESUMO

Cancer cells frequently alter their lipids to grow and adapt to their environment1-3. Despite the critical functions of lipid metabolism in membrane physiology, signalling and energy production, how specific lipids contribute to tumorigenesis remains incompletely understood. Here, using functional genomics and lipidomic approaches, we identified de novo sphingolipid synthesis as an essential pathway for cancer immune evasion. Synthesis of sphingolipids is surprisingly dispensable for cancer cell proliferation in culture or in immunodeficient mice but required for tumour growth in multiple syngeneic models. Blocking sphingolipid production in cancer cells enhances the anti-proliferative effects of natural killer and CD8+ T cells partly via interferon-γ (IFNγ) signalling. Mechanistically, depletion of glycosphingolipids increases surface levels of IFNγ receptor subunit 1 (IFNGR1), which mediates IFNγ-induced growth arrest and pro-inflammatory signalling. Finally, pharmacological inhibition of glycosphingolipid synthesis synergizes with checkpoint blockade therapy to enhance anti-tumour immune response. Altogether, our work identifies glycosphingolipids as necessary and limiting metabolites for cancer immune evasion.


Assuntos
Linfócitos T CD8-Positivos , Glicoesfingolipídeos , Receptor de Interferon gama , Interferon gama , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Evasão Tumoral , Animais , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/biossíntese , Camundongos , Humanos , Interferon gama/metabolismo , Interferon gama/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Proliferação de Células , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/deficiência , Masculino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Evasão da Resposta Imune , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL
6.
Mol Cell ; 82(15): 2832-2843.e7, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35714613

RESUMO

Iron is the most abundant transition metal essential for numerous cellular processes. Although most mammalian cells acquire iron through transferrin receptors, molecular players of iron utilization under iron restriction are incompletely understood. To address this, we performed metabolism-focused CRISPRa gain-of-function screens, which revealed metabolic limitations under stress conditions. Iron restriction screens identified not only expected members of iron utilization pathways but also SLCO2B1, a poorly characterized membrane carrier. SLCO2B1 expression is sufficient to increase intracellular iron, bypass the essentiality of the transferrin receptor, and enable proliferation under iron restriction. Mechanistically, SLCO2B1 mediates heme analog import in cellular assays. Heme uptake by SLCO2B1 provides sufficient iron for proliferation through heme oxygenases. Notably, SLCO2B1 is predominantly expressed in microglia in the brain, and primary Slco2b1-/- mouse microglia exhibit strong defects in heme analog import. Altogether, our work identifies SLCO2B1 as a microglia-enriched plasma membrane heme importer and provides a genetic platform to identify metabolic limitations under stress conditions.


Assuntos
Heme , Ferro , Transportadores de Ânions Orgânicos/metabolismo , Animais , Transporte Biológico , Heme/genética , Heme/metabolismo , Ferro/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Ativação Transcricional
7.
Mol Cell ; 77(3): 645-655.e7, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31983508

RESUMO

The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.


Assuntos
Proliferação de Células/fisiologia , Ferro/metabolismo , Lisossomos/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Células Jurkat , Lisossomos/fisiologia , Mitocôndrias/metabolismo , Transdução de Sinais/genética
8.
Cell ; 151(5): 1126-37, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178128

RESUMO

The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Ribossomos/metabolismo , Transcriptoma , Animais , Encéfalo/citologia , Jejum , Comportamento Alimentar , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Fosforilação , Proteína S6 Ribossômica/metabolismo
9.
Nature ; 599(7883): 136-140, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707288

RESUMO

Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism1. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions2. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron-sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.


Assuntos
Glutationa/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Transporte Biológico , Proliferação de Células , Células Cultivadas , Eritropoese , Glutationa/deficiência , Homeostase , Humanos , Proteínas Ferro-Enxofre/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Oxirredução , Proteoma , Proteômica
10.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846317

RESUMO

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/enzimologia , Glicerídeos/biossíntese , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipogênese , Células 3T3 , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Camundongos , Ácido Palmítico/toxicidade , Ligação Proteica
11.
Mol Cell ; 69(4): 610-621.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452640

RESUMO

Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Glicina Hidroximetiltransferase/metabolismo , Mitocôndrias/genética , Iniciação Traducional da Cadeia Peptídica , RNA de Transferência de Metionina/química , Serina/química , Animais , Apoptose , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Proliferação de Células , Citosol/metabolismo , Feminino , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Serina/genética , Serina/metabolismo , Tetra-Hidrofolatos/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biol Chem ; 300(2): 105645, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218225

RESUMO

Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.


Assuntos
Glutamato-Cisteína Ligase , Glutationa , Animais , Camundongos , Butionina Sulfoximina/farmacologia , Modelos Animais de Doenças , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Linhagem Celular Tumoral , Humanos
13.
Nature ; 567(7746): 118-122, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760928

RESUMO

Cholesterol is essential for cells to grow and proliferate. Normal mammalian cells meet their need for cholesterol through its uptake or de novo synthesis1, but the extent to which cancer cells rely on each of these pathways remains poorly understood. Here, using a competitive proliferation assay on a pooled collection of DNA-barcoded cell lines, we identify a subset of cancer cells that is auxotrophic for cholesterol and thus highly dependent on its uptake. Through metabolic gene expression analysis, we pinpoint the loss of squalene monooxygenase expression as a cause of cholesterol auxotrophy, particularly in ALK+ anaplastic large cell lymphoma (ALCL) cell lines and primary tumours. Squalene monooxygenase catalyses the oxidation of squalene to 2,3-oxidosqualene in the cholesterol synthesis pathway and its loss results in accumulation of the upstream metabolite squalene, which is normally undetectable. In ALK+ ALCLs, squalene alters the cellular lipid profile and protects cancer cells from ferroptotic cell death, providing a growth advantage under conditions of oxidative stress and in tumour xenografts. Finally, a CRISPR-based genetic screen identified cholesterol uptake by the low-density lipoprotein receptor as essential for the growth of ALCL cells in culture and as patient-derived xenografts. This work reveals that the cholesterol auxotrophy of ALCLs is a targetable liability and, more broadly, that systematic approaches can be used to identify nutrient dependencies unique to individual cancer types.


Assuntos
Apoptose , Colesterol/metabolismo , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Estresse Oxidativo , Esqualeno/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/biossíntese , Código de Barras de DNA Taxonômico , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Feminino , Humanos , Ferro/metabolismo , Linfoma Anaplásico de Células Grandes/enzimologia , Masculino , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de LDL/genética , Receptores de LDL/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Adulto Jovem
15.
Mol Cell ; 64(5): 856-857, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912096

RESUMO

In this issue, Fan et al. (2016) show that oncogenic tyrosine kinases can promote glycolysis by phosphorylating and stabilizing the tetrameric form of mitochondrial acetyl-coA acetyltransferase 1 (ACAT1). The authors further identify a small molecule ACAT1 inhibitor that displays anti-cancer effects.


Assuntos
Acetil-CoA C-Acetiltransferase , Proteínas Tirosina Quinases , Glicólise , Humanos , Mitocôndrias , Neoplasias
16.
Cell ; 135(2): 240-9, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18835024

RESUMO

The increased white adipose tissue (WAT) mass associated with obesity is the result of both hyperplasia and hypertrophy of adipocytes. However, the mechanisms controlling adipocyte number are unknown in part because the identity of the physiological adipocyte progenitor cells has not been defined in vivo. In this report, we employ a variety of approaches, including a noninvasive assay for following fat mass reconstitution in vivo, to identify a subpopulation of early adipocyte progenitor cells (Lin(-):CD29(+):CD34(+):Sca-1(+):CD24(+)) resident in adult WAT. When injected into the residual fat pads of A-Zip lipodystrophic mice, these cells reconstitute a normal WAT depot and rescue the diabetic phenotype that develops in these animals. This report provides the identification of an undifferentiated adipocyte precursor subpopulation resident within the adipose tissue stroma that is capable of proliferating and differentiating into an adipose depot in vivo.


Assuntos
Adipócitos Brancos/citologia , Células-Tronco/citologia , Adipogenia , Animais , Proliferação de Células , Feminino , Citometria de Fluxo , Lipodistrofia/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo
17.
Nature ; 551(7682): 639-643, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168506

RESUMO

Environmental nutrient levels impact cancer cell metabolism, resulting in context-dependent gene essentiality. Here, using loss-of-function screening based on RNA interference, we show that environmental oxygen levels are a major driver of differential essentiality between in vitro model systems and in vivo tumours. Above the 3-8% oxygen concentration typical of most tissues, we find that cancer cells depend on high levels of the iron-sulfur cluster biosynthetic enzyme NFS1. Mammary or subcutaneous tumours grow despite suppression of NFS1, whereas metastatic or primary lung tumours do not. Consistent with a role in surviving the high oxygen environment of incipient lung tumours, NFS1 lies in a region of genomic amplification present in lung adenocarcinoma and is most highly expressed in well-differentiated adenocarcinomas. NFS1 activity is particularly important for maintaining the iron-sulfur co-factors present in multiple cell-essential proteins upon exposure to oxygen compared to other forms of oxidative damage. Furthermore, insufficient iron-sulfur cluster maintenance robustly activates the iron-starvation response and, in combination with inhibition of glutathione biosynthesis, triggers ferroptosis, a non-apoptotic form of cell death. Suppression of NFS1 cooperates with inhibition of cysteine transport to trigger ferroptosis in vitro and slow tumour growth. Therefore, lung adenocarcinomas select for expression of a pathway that confers resistance to high oxygen tension and protects cells from undergoing ferroptosis in response to oxidative damage.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Morte Celular , Proteínas Ferro-Enxofre/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Liases de Carbono-Enxofre/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular/genética , Linhagem Celular Tumoral , Cisteína/metabolismo , Glutationa/biossíntese , Humanos , Neoplasias Pulmonares/genética , Camundongos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Oxigênio/farmacologia , Interferência de RNA
19.
Nat Chem Biol ; 16(12): 1351-1360, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32778843

RESUMO

Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.


Assuntos
Cistina/metabolismo , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Tetra-Hidrofolato Desidrogenase/genética , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Biopterinas/análogos & derivados , Biopterinas/farmacologia , Carbolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cistina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Ferroptose/efeitos dos fármacos , Antagonistas do Ácido Fólico/farmacologia , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Peroxidação de Lipídeos/efeitos dos fármacos , Metotrexato/farmacologia , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tetra-Hidrofolato Desidrogenase/metabolismo , Vitamina E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA