Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 163(2): 445-55, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451488

RESUMO

RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Adenina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Biológicos , Sítio de Iniciação de Transcrição
2.
Plant Cell ; 35(8): 3109-3126, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37208763

RESUMO

DNA methylation is a conserved epigenetic modification that is typically associated with silencing of transposable elements and promoter methylated genes. However, some DNA-methylated loci are protected from silencing, allowing transcriptional flexibility in response to environmental and developmental cues. Through a genetic screen in Arabidopsis (Arabidopsis thaliana), we uncovered an antagonistic relationship between the MICRORCHIDIA (MORC) protein and the IMITATION SWITCH (ISWI) complex in regulating the DNA-methylated SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC) reporter. We demonstrate that components of the plant-specific ISWI complex, including CHROMATIN REMODELING PROTEIN11 (CHR11), CHR17, DDT-RELATED PROTEIN4 (DDR4), and DDR5, function to partially derepress silenced genes and transposable elements (TEs), through their function in regulating nucleosome distribution. This action also requires the known transcriptional activator DNAJ proteins, providing a mechanistic link between nucleosome remodeling and transcriptional activation. Genome-wide studies revealed that DDR4 causes changes in nucleosome distribution at numerous loci, a subset of which is associated with changes in DNA methylation and/or transcription. Our work reveals a mechanism for balancing transcriptional flexibility and faithful silencing of DNA-methylated loci. As both ISWI and MORC family genes are widely distributed across plant and animal species, our findings may represent a conserved eukaryotic mechanism for fine-tuning gene expression under epigenetic regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DDT/metabolismo , Epigênese Genética , Elementos de DNA Transponíveis , Comportamento Imitativo , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética
3.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266901

RESUMO

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Amido/metabolismo , beta-Amilase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos/genética , Proteínas de Transporte , Clonagem Molecular , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilase/genética
4.
Plant Cell ; 34(3): 947-948, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35243510

Assuntos
Reprodução , Sementes
5.
Nature ; 507(7490): 124-128, 2014 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-24463519

RESUMO

RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH9 [corrected] with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Biocatálise , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genoma de Planta/genética , Modelos Moleculares , Mutação/genética , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Dedos de Zinco
10.
Plant Cell ; 28(6): 1472-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27207856

RESUMO

To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Mutação , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
11.
Plant Cell ; 32(7): 2063-2064, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434854
13.
14.
Plant Cell ; 32(8): 2449-2450, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32605916
16.
EMBO J ; 32(14): 2073-85, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23778966

RESUMO

Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1-MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Complexo Repressor Polycomb 2 , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética
17.
Proc Natl Acad Sci U S A ; 111(20): 7474-9, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799676

RESUMO

Epigenetic gene silencing is of central importance to maintain genome integrity and is mediated by an elaborate interplay between DNA methylation, histone posttranslational modifications, and chromatin remodeling complexes. DNA methylation and repressive histone marks usually correlate with transcriptionally silent heterochromatin, however there are exceptions to this relationship. In Arabidopsis, mutation of Morpheus Molecule 1 (MOM1) causes transcriptional derepression of heterochromatin independently of changes in DNA methylation. More recently, two Arabidopsis homologues of mouse microrchidia (MORC) genes have also been implicated in gene silencing and heterochromatin condensation without altering genome-wide DNA methylation patterns. In this study, we show that Arabidopsis microrchidia (AtMORC6) physically interacts with AtMORC1 and with its close homologue, AtMORC2, in two mutually exclusive protein complexes. RNA-sequencing analyses of high-order mutants indicate that AtMORC1 and AtMORC2 act redundantly to repress a common set of loci. We also examined genetic interactions between AtMORC6 and MOM1 pathways. Although AtMORC6 and MOM1 control the silencing of a very similar set of genomic loci, we observed synergistic transcriptional regulation in the mom1/atmorc6 double mutant, suggesting that these epigenetic regulators act mainly by different silencing mechanisms.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/química , Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Genótipo , Heterocromatina/metabolismo , Mutação , Ligação Proteica
18.
Plant Cell ; 25(4): 1400-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23632447

RESUMO

The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches--factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans.


Assuntos
Glicogênio/biossíntese , Proteínas de Plantas/metabolismo , Amido/metabolismo , Urticaceae/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Metabolismo dos Carboidratos/genética , Eletroforese em Gel de Poliacrilamida , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica , Análise de Sequência de RNA , Solubilidade , Amido/ultraestrutura , Sintase do Amido/genética , Sintase do Amido/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma , Urticaceae/genética
19.
Development ; 138(14): 2977-86, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21693514

RESUMO

Seedling establishment is a crucial phase during plant development when the germinating heterotrophic embryo switches to autotrophic growth and development. Positive regulators of embryonic development need to be turned off, while the cell cycle machinery is activated to allow cell cycle entry and organ primordia initiation. However, it is not yet understood how the molecular mechanisms responsible for the onset of cell division, metabolism changes and cell differentiation are coordinated during this transition. Here, we demonstrate that the Arabidopsis thaliana RETINOBLASTOMA-RELATED protein (RBR) ortholog of the animal tumor suppressor retinoblastoma (pRB) not only controls the expression of cell cycle-related genes, but is also required for persistent shut-down of late embryonic genes by increasing their histone H3K27 trimethylation. Seedlings with reduced RBR function arrest development after germination, and stimulation with low amounts of sucrose induces transcription of late embryonic genes and causes ectopic cell division. Our results suggest a model in which RBR acts antagonistically to sucrose by negatively regulating the cell cycle and repressing embryonic genes. Thus, RBR is a positive regulator of the developmental switch from embryonic heterotrophic growth to autotrophic growth. This establishes RBR as a new integrator of metabolic and developmental decisions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Processos Autotróficos/fisiologia , Ciclo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plântula/embriologia , Imunoprecipitação da Cromatina , Metilação de DNA/fisiologia , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Glucose/metabolismo , Histonas/metabolismo , Immunoblotting , Espectrometria de Massas , Análise em Microsséries , Microscopia Eletrônica de Varredura , Modelos Biológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Plant Cell ; 23(11): 3911-28, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128122

RESUMO

Import of nuclear-encoded precursor proteins from the cytosol is an essential step in chloroplast biogenesis that is mediated by protein translocon complexes at the inner and outer envelope membrane (TOC). Toc159 is thought to be the main receptor for photosynthetic proteins, but lacking a large-scale systems approach, this hypothesis has only been tested for a handful of photosynthetic and nonphotosynthetic proteins. To assess Toc159 precursor specificity, we quantitatively analyzed the accumulation of plastid proteins in two mutant lines deficient in this receptor. Parallel genome-wide transcript profiling allowed us to discern the consequences of impaired protein import from systemic transcriptional responses that contribute to the loss of photosynthetic capacity. On this basis, we defined putative Toc159-independent and Toc159-dependent precursor proteins. Many photosynthetic proteins accumulate in Toc159-deficient plastids, and, surprisingly, several distinct metabolic pathways are negatively affected by Toc159 depletion. Lack of Toc159 furthermore affects several proteins that accumulate as unprocessed N-acetylated precursor proteins outside of plastids. Together, our data show an unexpected client protein promiscuity of Toc159 that requires a far more differentiated view of Toc159 receptor function and regulation of plastid protein import, in which cytosolic Met removal followed by N-terminal acetylation of precursors emerges as an additional regulatory step.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Plastídeos/metabolismo , Precursores de Proteínas/metabolismo , Acetilação , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Regulação para Baixo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Metionina/metabolismo , Dados de Sequência Molecular , Mutação , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plastídeos/genética , Precursores de Proteínas/genética , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA