Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(9): e1010940, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37713444

RESUMO

The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.


Assuntos
Neoplasias da Mama , Edição de Genes , Animais , Humanos , Camundongos , Feminino , Virulência , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Éxons/genética , Códon , Nucleotídeos , Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína BRCA1/genética
2.
Cancer Sci ; 114(5): 1800-1815, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36715493

RESUMO

Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Síndrome Hereditária de Câncer de Mama e Ovário , Síndromes Neoplásicas Hereditárias , Humanos , Feminino , Animais , Camundongos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias/genética , Mutação
3.
Hum Mutat ; 43(10): 1396-1407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35762214

RESUMO

Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.


Assuntos
Proteína BRCA2 , Neoplasias da Mama , Cordoma , Proteína do Grupo de Complementação N da Anemia de Fanconi , Animais , Proteína BRCA2/genética , Neoplasias da Mama/genética , Cordoma/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Camundongos
4.
Hum Mutat ; 42(2): 200-212, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314489

RESUMO

The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.


Assuntos
Neoplasias da Mama , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Testes Genéticos , Humanos , Malásia , Camundongos
5.
Breast Cancer Res ; 22(1): 43, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393398

RESUMO

Next-generation sequencing of Sri Lankan families with inherited cancer syndromes resulted in the identification of five BRCA2 variants of unknown clinical significance. Interpreting such variants poses significant challenges for both clinicians and patients. Using a mouse embryonic stem cell-based functional assay, we found I785V, N830D, and K2077N to be functionally indistinguishable from wild-type BRCA2. Specific but mild sensitivity to olaparib and reduction in homologous recombination (HR) efficiency suggest partial loss of function of the A262T variant. This variant is located in the N-terminal DNA binding domain of BRCA2 that can facilitate HR by binding to dsDNA/ssDNA junctions. P3039P is clearly pathogenic because of premature protein truncation caused by exon 23 skipping. These findings highlight the value of mouse embryonic stem cell-based assays for determining the functional significance of variants of unknown clinical significance and provide valuable information regarding risk estimation and genetic counseling of families carrying these BRCA2 variants.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Animais , Proteína BRCA2/metabolismo , Bioensaio/métodos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/metabolismo , Sobrevivência Celular , Estudos de Coortes , Feminino , Recombinação Homóloga , Humanos , Camundongos , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/metabolismo , Sri Lanka/epidemiologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Hum Genet ; 65(9): 805-809, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32393813

RESUMO

A pathogenic mutation in BRCA2 significantly increases the risk of breast and ovarian cancers making it imperative to examine the functional consequences of variants of uncertain clinical significance. Variants that are predicted to result in a truncated protein are unambiguously classified as pathogenic. We have previously shown how a pathogenic splice site variant known to generate a premature termination codon (PTC) in exon 9 and a nonsense mutation at exon 7, can generate functional BRCA2 by skipping exons 4-7 and restoring the reading frame. Using a well-established mouse embryonic stem cell-based assay, we functionally characterize here one splice site mutation and 11 pathogenic BRCA2 variants that are either nonsense mutation or generate PTC in different exons ranging from exons 4 to 7. Our study shows that five variants can restore the open reading frame by exon skipping and generate a functional protein. This suggests further need to exercise prudence when classifying clearly pathogenic variants.


Assuntos
Proteína BRCA2/genética , Códon sem Sentido , Células-Tronco Embrionárias/metabolismo , Neoplasias Ovarianas/genética , Processamento Alternativo , Animais , Proteína BRCA2/metabolismo , Sobrevivência Celular/genética , Códon sem Sentido/genética , Éxons , Feminino , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Mutação , Sítios de Splice de RNA
7.
Mol Cell Probes ; 54: 101654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866661

RESUMO

Citrus tristeza virus (CTV) is the etiologic agent of the destructive Tristeza disease, a massive impediment for the healthy citrus industry worldwide. Routine indexing of CTV is an essential component for disease surveys and citrus budwood certification for production of disease-free planting material. Therefore, the present study was carried out to develop an efficient serological assay for CTV detection based on the RNA binding protein (CTV-p23), which is translated from a subgenomic RNA (sgRNA) that accumulates at higher levels in CTV-infected plants. CTV-p23 gene was amplified, cloned and polyclonal antibodies were raised against recombinant CTV-p23 protein. The efficacy of the produced polyclonal antibodies was tested by Western blots and ELISA to develop a quick, sensitive and economically affordable CTV detection tool and was used for indexing of large number of plant samples. The evaluation results indicated that the developed CTV-p23 antibodies had an excellent diagnostic agreement with RT-PCR and would be effective for the detection of CTV in field samples. Furthermore, CTV-p23 gene specific primers designed in the present study were found 1000 times more sensitive than the reported coat protein (CTV-p25) gene specific primers for routine CTV diagnosis. In silico characterizations of CTV-p23 protein revealed the presence of key conserved amino acid residues that involved in the regulation of protein stability, suppressor activity and protein expression levels. This would provide precious ground information towards understanding the viral pathogenecity and protein level accumulation for early diagnosis of virus.


Assuntos
Anticorpos/metabolismo , Closterovirus/isolamento & purificação , Simulação por Computador , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Citrus/virologia , Closterovirus/genética , Modelos Moleculares , Doenças das Plantas/virologia , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Reprodutibilidade dos Testes , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(43): 11440-11445, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073069

RESUMO

Aberrant alternative splicing and epigenetic changes are both associated with various cancers, but epigenetic regulation of alternative splicing in cancer is largely unknown. Here we report that the intragenic DNA methylation-mediated binding of Brother of Regulator of Imprinted Sites (BORIS) at the alternative exon of Pyruvate Kinase (PKM) is associated with cancer-specific splicing that promotes the Warburg effect and breast cancer progression. Interestingly, the inhibition of DNA methylation, BORIS depletion, or CRISPR/Cas9-mediated deletion of the BORIS binding site leads to a splicing switch from cancer-specific PKM2 to normal PKM1 isoform. This results in the reversal of the Warburg effect and the inhibition of breast cancer cell growth, which may serve as a useful approach to inhibit the growth of breast cancer cells. Importantly, our results show that in addition to PKM splicing, BORIS also regulates the alternative splicing of several genes in a DNA methylation-dependent manner. Our findings highlight the role of intragenic DNA methylation and DNA binding protein BORIS in cancer-specific splicing and its role in tumorigenesis.


Assuntos
Neoplasias da Mama/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoprecipitação da Cromatina , DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Análise Serial de Proteínas , Interferência de RNA , RNA Interferente Pequeno , Transcriptoma
9.
Hum Mol Genet ; 25(10): 1934-1945, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26920070

RESUMO

The breast cancer gene, BRCA2, is essential for viability, yet patients with Fanconi anemia-D1 subtype are born alive with biallelic mutations in this gene. The hypomorphic nature of the mutations is believed to support viability, but this is not always apparent. One such mutation is IVS7+2T>G, which causes premature protein truncation due to skipping of exon 7. We previously identified a transcript lacking exons 4-7, which restores the open-reading frame, encodes a DNA repair proficient protein and is expressed in IVS7+2T>G carriers. However, because the exons 4-7 encoded region contains several residues required for normal cell-cycle regulation and cytokinesis, this transcript's ability to support viability can be argued. To address this, we generated a Brca2 knock-in mouse model lacking exons 4-7 and demonstrated that these exons are dispensable for viability as well as tumor-free survival. This study provides the first in vivo evidence of the functional significance of a minor transcript of BRCA2 that can play a major role in the survival of humans who are homozygous for a clearly pathogenic mutation. Our results highlight the importance of assessing protein function restoration by premature truncating codon bypass by alternative splicing when evaluating the functional significance of variants such as nonsense and frame-shift mutations that are assumed to be clearly pathogenic. Our findings will impact not only the assessment of variants that map to this region, but also influence counseling paradigms and treatment options for such mutation carriers.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Anemia de Fanconi/genética , Predisposição Genética para Doença , Processamento Alternativo/genética , Animais , Neoplasias da Mama/patologia , Éxons/genética , Anemia de Fanconi/patologia , Técnicas de Introdução de Genes , Mutação em Linhagem Germinativa , Humanos , Camundongos , Mutação , Linhagem , Sítios de Splice de RNA
10.
Hum Mol Genet ; 21(18): 3993-4006, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22678057

RESUMO

Single-nucleotide substitutions and small in-frame insertions or deletions identified in human breast cancer susceptibility genes BRCA1 and BRCA2 are frequently classified as variants of unknown clinical significance (VUS) due to the availability of very limited information about their functional consequences. Such variants can most reliably be classified as pathogenic or non-pathogenic based on the data of their co-segregation with breast cancer in affected families and/or their co-occurrence with a pathogenic mutation. Biological assays that examine the effect of variants on protein function can provide important information that can be used in conjunction with available familial data to determine the pathogenicity of VUS. In this report, we have used a previously described mouse embryonic stem (mES) cell-based functional assay to characterize eight BRCA2 VUS that affect highly conserved amino acid residues and map to the N-terminal PALB2-binding or the C-terminal DNA-binding domains. For several of these variants, very limited co-segregation information is available, making it difficult to determine their pathogenicity. Based on their ability to rescue the lethality of Brca2-deficient mES cells and their effect on sensitivity to DNA-damaging agents, homologous recombination and genomic integrity, we have classified these variants as pathogenic or non-pathogenic. In addition, we have used homology-based modeling as a predictive tool to assess the effect of some of these variants on the structural integrity of the C-terminal DNA-binding domain and also generated a knock-in mouse model to analyze the physiological significance of a residue reported to be essential for the interaction of BRCA2 with meiosis-specific recombinase, DMC1.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Células-Tronco Embrionárias/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Proteína BRCA2/química , Proteínas de Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Mapeamento Cromossômico , Sequência Conservada , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Estudos de Associação Genética , Humanos , Funções Verossimilhança , Masculino , Camundongos , Camundongos Transgênicos , Mitomicina/farmacologia , Modelos Moleculares , Mutagênicos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
11.
Microbiology (Reading) ; 160(Pt 8): 1599-1608, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24841705

RESUMO

Micro-organisms sense the availability of nutrients in their environment to control cellular behaviour and the expression of transporters and enzymes that are required for the utilization of these nutrients. In the pathogenic yeast Candida albicans, the preferred nitrogen source ammonium suppresses the switch from yeast to filamentous growth in response to certain stimuli, and it also represses the secretion of proteases, which are required for the utilization of proteins as an alternative nitrogen source. To investigate whether C. albicans senses the availability of ammonium in the extracellular environment or if ammonium uptake into the cell is required to regulate morphogenesis and gene expression, we compared the behaviour of wild-type cells and ammonium uptake-deficient mutants in the presence and absence of extracellular ammonium. Arginine-induced filamentous growth was suppressed by ammonium in the wild-type, but not in mutants lacking the ammonium permeases Mep1 and Mep2. Similarly, ammonium suppressed protease secretion and extracellular protein degradation in the wild-type, but not in mutants lacking the ammonium transporters. By comparing the gene expression profiles of C. albicans grown in the presence of low or high ammonium concentrations, we identified a set of genes whose expression is controlled by nitrogen availability. The repression of genes involved in the utilization of alternative nitrogen sources, which occurred under ammonium-replete conditions in the wild-type, was abrogated in mep1Δ mep2Δ mutants. These results demonstrate that C. albicans does not respond to the presence of sufficient amounts of the preferred nitrogen source ammonium by sensing its availability in the environment. Instead, ammonium has to be taken up into the cell to control morphogenesis, protease secretion and gene expression.


Assuntos
Compostos de Amônio/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Arginina/metabolismo , Candida albicans/enzimologia , Candida albicans/genética , Proteínas Fúngicas/genética , Peptídeo Hidrolases/genética , Transporte Proteico
12.
Plants (Basel) ; 13(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409680

RESUMO

Tomato (Solanum lycopersicum L.), the second most important vegetable crop globally, faces a significant threat from various viral diseases. A newly emerging disease, characterised by distinctive shoestring symptoms on leaves and the development of unripe, small, and hard fruit, poses a serious challenge to tomato cultivation in India. An initial survey in an experimental field revealed more than 50% of the plants displayed symptoms of the shoestring disease, resulting in substantial reductions in fruit yield and quality. Transmission electron microscopy (TEM) and molecular analyses identified an isolate of the tomato mottle mosaic virus (ToMMV) in the affected plants. When the partially purified virus was mechanically inoculated into tomato cv. Pusa Ruby plants, it reproduced the characteristic shoestring symptoms, confirming its causal relationship with the disease. Notably, the present shoestring isolate of ToMMV (ToMMV-Tss) was found to induce similar shoestring symptoms in most of the major commercial tomato varieties when inoculated under controlled experimental conditions in the glasshouse, indicating its aggressive nature. Host range studies demonstrated that the ToMMV-Tss can infect several solanaceous species, while cucurbitaceous hosts remained unaffected. Moreover, the virus was found to be seed-transmissible, with a small percentage of seedlings from infected plants displaying symptoms. These findings underscore the significant impact of ToMMV on tomato production in India and emphasise the need for reliable diagnostic tools and effective management strategies to curb the spread and mitigate the impact of this virus on commercial tomato cultivation.

13.
Cancer Prev Res (Phila) ; 17(3): 107-118, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38251904

RESUMO

The concept of green chemoprevention was introduced in 2012 by Drs. Jed Fahey and Thomas Kensler as whole-plant foods and/or extract-based interventions demonstrating cancer prevention activity. Refining concepts and research demonstrating proof-of-principle approaches are highlighted within this review. Early approaches included extensively investigated whole foods, including broccoli sprouts and black raspberries showing dose-responsive effects across a range of activities in both animals and humans with minimal or no apparent toxicity. A recent randomized crossover trial evaluating the detoxification of tobacco carcinogens by a broccoli seed and sprout extract in the high-risk cohort of current smokers highlights the use of a dietary supplement as a potential next-generation green chemoprevention or green cancer prevention approach. Challenges are addressed, including the selection of dose, duration and mode of delivery, choice of control group, and standardization of the plant food or extract. Identification and characterization of molecular targets and careful selection of high-risk cohorts for study are additional important considerations when designing studies. Goals for precision green cancer prevention include acquiring robust evidence from carefully controlled human studies linking plant foods, extracts, and compounds to modulation of targets for cancer risk reduction in individual cancer types.


Assuntos
Neoplasias , Animais , Humanos , Neoplasias/prevenção & controle , Quimioprevenção , Suplementos Nutricionais
14.
Blood ; 118(9): 2430-42, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21719596

RESUMO

Biallelic mutations in the human breast cancer susceptibility gene, BRCA2, are associated with Fanconi anemia, implying that some persons who inherit 2 deleterious variants of BRCA2 are able to survive even though it is well established that BRCA2 is indispensable for viability in mice. One such variant, IVS7 + 2T > G, results in premature protein truncation because of skipping of exon 7. Surprisingly, the persons who are either IVS7 + 2T > G homozygous or compound heterozygous are born alive but die of malignancy associated with Fanconi anemia. Using a mouse embryonic stem cell-based functional assay, we found that the IVS7 + 2T > G allele produces an alternatively spliced transcript lacking exons 4-7, encoding an in-frame BRCA2 protein with an internal deletion of 105 amino acids (BRCA2(Δ105)). We demonstrate that BRCA2(Δ105) is proficient in homologous recombination-mediated DNA repair as measured by different functional assays. Evaluation of this transcript in normal and leukemia cells suggests that BRCA2(Δ105) may contribute to the viability of persons inheriting this mutation. In this study, we have also characterized 5 other BRCA2 variants and found 3 of these (p.L2510P, p.R2336H, and p.W2626C) to be deleterious and 2 (p.I2490T and p.K2729N) probably neutral. Such studies are important to understand the functional significance of unclassified BRCA2 variants.


Assuntos
Anemia de Fanconi/genética , Genes BRCA2 , Teste de Complementação Genética , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cromossomos Artificiais Bacterianos/genética , Células-Tronco Embrionárias , Éxons/genética , Genótipo , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Sítios de Splice de RNA/genética , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico
15.
NAR Cancer ; 5(3): zcad032, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37388539

RESUMO

The hypoxic milieu is a critical modulator of aerobic glycolysis, yet the regulatory mechanisms between the key glycolytic enzymes in hypoxic cancer cells are largely unchartered. In particular, the M2 isoform of pyruvate kinase (PKM2), the rate-limiting enzyme of glycolysis, is known to confer adaptive advantages under hypoxia. Herein, we report that non-canonical PKM2 mediates HIF-1α and p300 enrichment at PFKFB3 hypoxia-responsive elements (HREs), causing its upregulation. Consequently, the absence of PKM2 activates an opportunistic occupancy of HIF-2α, along with acquisition of a poised state by PFKFB3 HREs-associated chromatin. This poised nature restricts HIF-2α from inducing PFKFB3 while permitting the maintenance of its basal-level expression by harboring multiple histone modifications. In addition, the clinical relevance of the study has been investigated by demonstrating that Shikonin blocks the nuclear translocation of PKM2 to suppress PFKFB3 expression. Furthermore, TNBC patient-derived organoids and MCF7 cells-derived xenograft tumors in mice exhibited substantial growth inhibition upon shikonin treatment, highlighting the vitality of targeting PKM2. Conclusively, this work provides novel insights into the contributions of PKM2 in modulating hypoxic transcriptome and a previously unreported poised epigenetic strategy exhibited by the hypoxic breast cancer cells for ensuring the maintenance of PFKFB3 expression.

16.
PLoS One ; 18(3): e0283590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952545

RESUMO

Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.


Assuntos
Meiose , Animais , Masculino , Camundongos , Pontos de Checagem do Ciclo Celular , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Fosforilação , Prófase
17.
Cell Rep Methods ; 3(11): 100628, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37922907

RESUMO

Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.


Assuntos
Genes BRCA2 , Neoplasias Ovarianas , Humanos , Feminino , Masculino , Animais , Camundongos , Células-Tronco Embrionárias Murinas , Neoplasias Ovarianas/genética , Proteína BRCA2/genética
18.
Arch Virol ; 157(3): 579-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160128

RESUMO

The complete genome sequence of a mandarin (Citrus reticulata) decline CTV isolate, Kpg3, of the Darjeeling hills of the Northeastern Himalayan region of India is reported for the first time. The complete Kpg3 genome has 19253 nt, and its nucleotide sequence identity ranged from 79% with the Florida CTV isolate T36 to 94% with the Israel isolate VT, whereas its identity to B165, the other Indian isolate, was 89%. Phylogenetic analysis indicated that the Kpg3 genome is closely related to isolate VT and distantly to T36 and B165. Recombination analysis indicated that Kpg3 is recombinant and originated through multiple recombination events in which parts of the genome were exchanged between divergent CTV sequences.


Assuntos
Citrus/virologia , Closterovirus/genética , Closterovirus/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA , Análise por Conglomerados , Genótipo , Índia , Dados de Sequência Molecular , Filogenia , Recombinação Genética
19.
Front Microbiol ; 13: 797463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464978

RESUMO

Mandarin orange is economically one of the most important fruit crops in Bhutan. However, in recent years, orange productivity has dropped due to severe infection of citrus tristeza virus (CTV) associated with the gradual decline of citrus orchards. Although the disease incidence has been reported, very limited information is available on genetic variability among the Bhutanese CTV variants. This study used reverse transcription PCR (RT-PCR) to detect CTV in collected field samples and recorded disease incidence up to 71.11% in Bhutan's prominent citrus-growing regions. To elucidate the extent of genetic variabilities among the Bhutanese CTV variants, we targeted four independent genomic regions (5'ORF1a, p25, p23, and p18) and analyzed a total of 64 collected isolates. These genomic regions were amplified and sequenced for further comparative bioinformatics analysis. Comprehensive phylogenetic reconstructions of the GenBank deposited sequences, including the corresponding genomic locations from 53 whole-genome sequences, revealed unexpected and rich diversity among Bhutanese CTV variants. A resistant-breaking (RB) variant was also identified for the first time from the Asian subcontinent. Our analyses unambiguously identified five (T36, T3, T68, VT, and HA16-5) major, well-recognized CTV strains. Bhutanese CTV variants form two additional newly identified distinct clades with higher confidence, B1 and B2, named after Bhutan. The origin of each of these nine clades can be traced back to their root in the north-eastern region of India and Bhutan. Together, our study established a definitive framework for categorizing global CTV variants into their distinctive clades and provided novel insights into multiple genomic region-based genetic diversity assessments, including their pathogenicity status.

20.
Nat Commun ; 13(1): 1751, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365640

RESUMO

The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB.


Assuntos
Quebras de DNA de Cadeia Dupla , Rad51 Recombinase , Animais , DNA , Reparo do DNA/genética , Recombinação Homóloga , Camundongos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA