Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genome Res ; 33(5): 787-797, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127332

RESUMO

High-throughput genotyping enables the large-scale analysis of genetic diversity in population genomics and genome-wide association studies that combine the genotypic and phenotypic characterization of large collections of accessions. Sequencing-based approaches for genotyping are progressively replacing traditional genotyping methods because of the lower ascertainment bias. However, genome-wide genotyping based on sequencing becomes expensive in species with large genomes and a high proportion of repetitive DNA. Here we describe the use of CRISPR-Cas9 technology to deplete repetitive elements in the 3.76-Gb genome of lentil (Lens culinaris), 84% consisting of repeats, thus concentrating the sequencing data on coding and regulatory regions (single-copy regions). We designed a custom set of 566,766 gRNAs targeting 2.9 Gbp of repeats and excluding repetitive regions overlapping annotated genes and putative regulatory elements based on ATAC-seq data. The novel depletion method removed ∼40% of reads mapping to repeats, increasing those mapping to single-copy regions by ∼2.6-fold. When analyzing 25 million fragments, this repeat-to-single-copy shift in the sequencing data increased the number of genotyped bases of ∼10-fold compared to nondepleted libraries. In the same condition, we were also able to identify ∼12-fold more genetic variants in the single-copy regions and increased the genotyping accuracy by rescuing thousands of heterozygous variants that otherwise would be missed because of low coverage. The method performed similarly regardless of the multiplexing level, type of library or genotypes, including different cultivars and a closely related species (L. orientalis). Our results showed that CRISPR-Cas9-driven repeat depletion focuses sequencing data on single-copy regions, thus improving high-density and genome-wide genotyping in large and repetitive genomes.


Assuntos
Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Genótipo , Genoma de Planta , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
2.
Plant J ; 115(4): 1021-1036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272491

RESUMO

The process of crop domestication leads to a dramatic reduction in the gene expression associated with metabolic diversity. Genes involved in specialized metabolism appear to be particularly affected. Although there is ample evidence of these effects at the genetic level, a reduction in diversity at the metabolite level has been taken for granted despite having never been adequately accessed and quantified. Here we leveraged the high coverage of ultra high performance liquid chromatography-high-resolution mass spectrometry based metabolomics to investigate the metabolic diversity in the common bean (Phaseolus vulgaris). Information theory highlights a shift towards lower metabolic diversity and specialization when comparing wild and domesticated bean accessions. Moreover, molecular networking approaches facilitated a broader metabolite annotation than achieved to date, and its integration with gene expression data uncovers a metabolic shift from specialized metabolism towards central metabolism upon domestication of this crop.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Domesticação , Teoria da Informação , Metabolômica
3.
Plant J ; 116(4): 1152-1171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37285370

RESUMO

Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.


Assuntos
Cicer , Lens (Planta) , Lupinus , Phaseolus , Humanos , Lipidômica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Alérgenos
4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279288

RESUMO

In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize (Zea mays L.) and bean (Phaseolus vulgaris L., Phaseolus coccineus L.) genotype combinations. Through amplicon sequencing of bacterial 16S rRNA genes from rhizosphere samples, our results unveil that the intercropping condition alters the rhizosphere bacterial communities, but that the degree of this impact is substantially affected by specific genotype combinations. Overall, intercropping allows the recruitment of exclusive bacterial species and enhances community complexity. Nevertheless, combinations of maize and bean genotypes determine two distinct groups characterized by higher or lower bacterial community diversity and complexity, which are influenced by the specific bean line associated. Moreover, intercropped maize lines exhibit varying propensities in recruiting bacterial members with more responsive lines showing preferential interactions with specific microorganisms. Our study conclusively shows that genotype has an impact on the rhizosphere microbiome and that a careful selection of genotype combinations for both species involved is essential to achieve compatibility optimization in intercropping.


Assuntos
Agricultura , Fabaceae , Agricultura/métodos , Zea mays/genética , Raízes de Plantas , Rizosfera , RNA Ribossômico 16S/genética , Fabaceae/genética , Solo , Bactérias/genética , Genótipo , Microbiologia do Solo
5.
Theor Appl Genet ; 137(1): 6, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091106

RESUMO

KEY MESSAGE: QTL mapping, association analysis, and colocation study with previously reported QTL revealed three main regions controlling pod morphological traits and two loci for edible pod characteristics on the common bean chromosomes Pv01 and Pv06. Bean pod phenotype is a complex characteristic defined by the combination of different traits that determine the potential use of a genotype as a snap bean. In this study, the TUM RIL population derived from a cross between 'TU' (dry) and 'Musica' (snap) was used to investigate the genetic control of pod phenotype. The character was dissected into pod morphological traits (PMTs) and edible pod characteristics (EPC). The results revealed 35 QTL for PMTs located on seven chromosomes, suggesting a strong QTL colocation on chromosomes Pv01 and Pv06. Some QTL were colocated with previously reported QTL, leading to the mapping of 15 consensus regions associated with bean PMTs. Analysis of EPC of cooked beans revealed that two major loci with epistatic effect, located on chromosomes Pv01 and Pv06, are involved in the genetic control of this trait. An association study using a subset of the Spanish Diversity Panel (snap vs. non-snap) detected 23 genomic regions, with three regions being mapped at a position similar to those of two loci identified in the TUM population. The results demonstrated the relevant roles of Pv01 and Pv06 in the modulation of bean pod phenotype. Gene ontology enrichment analysis revealed a significant overrepresentation of genes regulating the phenylpropanoid metabolic process and auxin response in regions associated with PMTs and EPC, respectively. Both biological functions converged in the lignin biosynthetic pathway, suggesting the key role of the pathway in the genetic control of bean pod phenotype.


Assuntos
Phaseolus , Locos de Características Quantitativas , Phaseolus/genética , Mapeamento Cromossômico , Fenótipo , Genótipo
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674592

RESUMO

Complete and accurate identification of genetic variants associated with specific phenotypes can be challenging when there is a high level of genomic divergence between individuals in a study and the corresponding reference genome. We have applied the Cas9-mediated enrichment coupled to nanopore sequencing to perform a targeted de novo assembly and accurately reconstruct a genomic region of interest. This approach was used to reconstruct a 250-kbp target region on chromosome 5 of the common bean genome (Phaseolus vulgaris) associated with the shattering phenotype. Comparing a non-shattering cultivar (Midas) with the reference genome revealed many single-nucleotide variants and structural variants in this region. We cut five 50-kbp tiled sub-regions of Midas genomic DNA using Cas9, followed by sequencing on a MinION device and de novo assembly, generating a single contig spanning the whole 250-kbp region. This assembly increased the number of Illumina reads mapping to genes in the region, improving their genotypability for downstream analysis. The Cas9 tiling approach for target enrichment and sequencing is a valuable alternative to whole-genome sequencing for the assembly of ultra-long regions of interest, improving the accuracy of downstream genotype-phenotype association analysis.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Sistemas CRISPR-Cas/genética , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Genômica
7.
Compr Rev Food Sci Food Saf ; 22(3): 1953-1985, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36992649

RESUMO

The demand for high-quality alternative food proteins has increased over the last few decades due to nutritional and environmental concerns, leading to the growing consumption of legumes such as common bean, chickpea, lentil, lupin, and pea. However, this has also increased the quantity of non-utilized byproducts (such as seed coats, pods, broken seeds, and wastewaters) that could be exploited as sources of ingredients and bioactive compounds in a circular economy. This review focuses on the incorporation of legume byproducts into foods when they are formulated as flours, protein/fiber or solid/liquid fractions, or biological extracts and uses an analytical approach to identify their nutritional, health-promoting, and techno-functional properties. Correlation-based network analysis of nutritional, technological, and sensory characteristics was used to explore the potential of legume byproducts in food products in a systematic manner. Flour is the most widely used legume-based food ingredient and is present at levels of 2%-30% in bakery products, but purified fractions and extracts should be investigated in more detail. Health beverages and vegan dressings with an extended shelf-life are promising applications thanks to the techno-functional features of legume byproducts (e.g., foaming and emulsifying behaviors) and the presence of polyphenols. A deeper exploration of eco-friendly processing techniques (e.g., fermentation and ohmic treatment) is necessary to improve the techno-functional properties of ingredients and the sensory characteristics of foods in a sustainable manner. The processing of legume byproducts combined with improved legume genetic resources could enhance the nutritional, functional, and technological properties of ingredients to ensure that legume-based foods achieve wider industrial and consumer acceptance.


Assuntos
Fabaceae , Fabaceae/metabolismo , Verduras , Sementes , Qualidade dos Alimentos , Farinha/análise
8.
Plant J ; 108(3): 646-660, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427014

RESUMO

Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.


Assuntos
Produtos Agrícolas/genética , Fabaceae/genética , Banco de Sementes , Bases de Dados Genéticas , Europa (Continente) , Genótipo , Cooperação Internacional , Sementes/genética
9.
J Exp Bot ; 72(10): 3569-3581, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33693665

RESUMO

Identifying the molecular basis of resistance to pathogens is critical to promote a chemical-free cropping system. In plants, nucleotide-binding leucine-rich repeat constitute the largest family of disease resistance (R) genes, but this resistance can be rapidly overcome by the pathogen, prompting research into alternative sources of resistance. Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the most important diseases of common bean. This study aimed to identify the molecular basis of Co-x, an anthracnose R gene conferring total resistance to the extremely virulent C. lindemuthianum strain 100. To that end, we sequenced the Co-x 58 kb target region in the resistant JaloEEP558 (Co-x) common bean and identified KTR2/3, an additional gene encoding a truncated and chimeric CRINKLY4 kinase, located within a CRINKLY4 kinase cluster. The presence of KTR2/3 is strictly correlated with resistance to strain 100 in a diversity panel of common beans. Furthermore, KTR2/3 expression is up-regulated 24 hours post-inoculation and its transient expression in a susceptible genotype increases resistance to strain 100. Our results provide evidence that Co-x encodes a truncated and chimeric CRINKLY4 kinase probably resulting from an unequal recombination event that occurred recently in the Andean domesticated gene pool. This atypical R gene may act as a decoy involved in indirect recognition of a fungal effector.


Assuntos
Colletotrichum , Phaseolus , Mapeamento Cromossômico , Genes de Plantas , Phaseolus/genética , Doenças das Plantas
10.
J Exp Bot ; 72(5): 1617-1633, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247939

RESUMO

In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.


Assuntos
Phaseolus , Phaseolus/genética , Locos de Características Quantitativas , Sementes
11.
Plant J ; 97(6): 1132-1153, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30480348

RESUMO

Common bean (Phaseolus vulgaris L.) is an important legume species with a rich natural diversity of landraces that originated from the wild forms following multiple independent domestication events. After the publication of its genome, several resources for this relevant crop have been made available. A comprehensive characterization of specialized metabolism in P. vulgaris, however, is still lacking. In this study, we used a metabolomics approach based on liquid chromatography-mass spectrometry to dissect the chemical composition at a tissue-specific level in several accessions of common bean belonging to different gene pools. Using a combination of literature search, mass spectral interpretation, 13 C-labeling, and correlation analyses, we were able to assign chemical classes and/or putative structures for approximately 39% of all measured metabolites. Additionally, we integrated this information with transcriptomics data and phylogenetic inference from multiple legume species to reconstruct the possible metabolic pathways and identify sets of candidate genes involved in the biosynthesis of specialized metabolites. A particular focus was given to flavonoids, triterpenoid saponins and hydroxycinnamates, as they represent metabolites involved in important ecological interactions and they are also associated with several health-promoting benefits when integrated into the human diet. The data are presented here in the form of an accessible resource that we hope will set grounds for further studies on specialized metabolism in legumes.


Assuntos
Metaboloma , Phaseolus/genética , Transcriptoma , Produtos Agrícolas , Perfilação da Expressão Gênica , Metabolômica , Especificidade de Órgãos , Phaseolus/metabolismo , Filogenia , Melhoramento Vegetal
12.
Plant J ; 97(4): 693-714, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422331

RESUMO

The complete or partial loss of shattering ability occurred independently during the domestication of several crops. Therefore, the study of this trait can provide an understanding of the link between phenotypic and molecular convergent evolution. The genetic dissection of 'pod shattering' in Phaseolus vulgaris is achieved here using a population of introgression lines and next-generation sequencing techniques. The 'occurrence' of the indehiscent phenotype (indehiscent versus dehiscent) depends on a major locus on chromosome 5. Furthermore, at least two additional genes are associated with the 'level' of shattering (number of shattering pods per plant: low versus high) and the 'mode' of shattering (non-twisting versus twisting pods), with all of these loci contributing to the phenotype by epistatic interactions. Comparative mapping indicates that the major gene identified on common bean chromosome 5 corresponds to one of the four quantitative trait loci for pod shattering in Vigna unguiculata. None of the loci identified comprised genes that are homologs of the known shattering genes in Glycine max. Therefore, although convergent domestication can be determined by mutations at orthologous loci, this was only partially true for P. vulgaris and V. unguiculata, which are two phylogenetically closely related crop species, and this was not the case for the more distant P. vulgaris and G. max. Conversely, comparative mapping suggests that the convergent evolution of the indehiscent phenotype arose through mutations in different genes from the same underlying gene networks that are involved in secondary cell-wall biosynthesis and lignin deposition patterning at the pod level.


Assuntos
Phaseolus/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Genoma de Planta/genética , Mutação/genética , Locos de Características Quantitativas/genética
13.
Plant Cell ; 26(5): 1901-1912, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24850850

RESUMO

Using RNA sequencing technology and de novo transcriptome assembly, we compared representative sets of wild and domesticated accessions of common bean (Phaseolus vulgaris) from Mesoamerica. RNA was extracted at the first true-leaf stage, and de novo assembly was used to develop a reference transcriptome; the final data set consists of ∼190,000 single nucleotide polymorphisms from 27,243 contigs in expressed genomic regions. A drastic reduction in nucleotide diversity (∼60%) is evident for the domesticated form, compared with the wild form, and almost 50% of the contigs that are polymorphic were brought to fixation by domestication. In parallel, the effects of domestication decreased the diversity of gene expression (18%). While the coexpression networks for the wild and domesticated accessions demonstrate similar seminal network properties, they show distinct community structures that are enriched for different molecular functions. After simulating the demographic dynamics during domestication, we found that 9% of the genes were actively selected during domestication. We also show that selection induced a further reduction in the diversity of gene expression (26%) and was associated with 5-fold enrichment of differentially expressed genes. While there is substantial evidence of positive selection associated with domestication, in a few cases, this selection has increased the nucleotide diversity in the domesticated pool at target loci associated with abiotic stress responses, flowering time, and morphology.

14.
New Phytol ; 209(4): 1781-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26526745

RESUMO

Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Phaseolus/genética , Phaseolus/fisiologia , Arqueologia , Biomassa , Núcleo Celular/genética , Cloroplastos/genética , Geografia , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética
15.
Proc Natl Acad Sci U S A ; 109(14): E788-96, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22393017

RESUMO

Knowledge about the origins and evolution of crop species represents an important prerequisite for efficient conservation and use of existing plant materials. This study was designed to solve the ongoing debate on the origins of the common bean by investigating the nucleotide diversity at five gene loci of a large sample that represents the entire geographical distribution of the wild forms of this species. Our data clearly indicate a Mesoamerican origin of the common bean. They also strongly support the occurrence of a bottleneck during the formation of the Andean gene pool that predates the domestication, which was suggested by recent studies based on multilocus molecular markers. Furthermore, a remarkable result was the genetic structure that was seen for the Mesoamerican accessions, with the identification of four different genetic groups that have different relationships with the sets of wild accessions from the Andes and northern Peru-Ecuador. This finding implies that both of the gene pools from South America originated through different migration events from the Mesoamerican populations that were characteristic of central Mexico.


Assuntos
Phaseolus/genética , Análise de Sequência de DNA , América Central , Genes de Plantas , Haplótipos , Dados de Sequência Molecular
16.
Front Plant Sci ; 15: 1386877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919821

RESUMO

Anthracnose, white mold, powdery mildew, and root rot caused by Colletotrichum lindemuthianum, Scletorinia sclerotiorum, Erysiphe spp., and Pythium ultimum, respectively, are among the most frequent diseases that cause significant production losses worldwide in common bean (Phaseolus vulgaris L.). Reactions against these four fungal diseases were investigated under controlled conditions using a diversity panel of 311 bean lines for snap consumption (Snap bean Panel). The genomic regions involved in these resistance responses were identified based on a genome-wide association study conducted with 16,242 SNP markers. The highest number of resistant lines was observed against the three C. lindemuthianum isolates evaluated: 156 lines were resistant to CL124 isolate, 146 lines resistant to CL18, and 109 lines were resistant to C531 isolate. Two well-known anthracnose resistance clusters were identified, the Co-2 on chromosome Pv11 for isolates CL124 and CL18, and the Co-3 on chromosome Pv04 for isolates CL124 and C531. In addition, other lesser-known regions of anthracnose resistance were identified on chromosomes Pv02, Pv06, Pv08, and Pv10. For the white mold isolate tested, 24 resistant lines were identified and the resistance was localized to three different positions on chromosome Pv08. For the powdery mildew local isolate, only 12 resistant lines were identified, and along with the two previous resistance genes on chromosomes Pv04 and Pv11, a new region on chromosome Pv06 was also identified. For root rot caused by Pythium, 31 resistant lines were identified and two main regions were located on chromosomes Pv04 and Pv05. Relevant information for snap bean breeding programs was provided in this work. A total of 20 lines showed resistant or intermediate responses against four or five isolates, which can be suitable for sustainable farm production and could be used as resistance donors. Potential genes and genomic regions to be considered for targeted improvement were provided, including new or less characterized regions that should be validated in future works. Powdery mildew disease was identified as a potential risk for snap bean production and should be considered a main goal in breeding programs.

17.
Sci Rep ; 14(1): 13970, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886488

RESUMO

Non-photochemical quenching (NPQ) is a protective mechanism for dissipating excess energy generated during photosynthesis in the form of heat. The accelerated relaxation of the NPQ in fluctuating light can lead to an increase in the yield and dry matter productivity of crops. Since the measurement of NPQ is time-consuming and requires specific light conditions, theoretical NPQ (NPQ(T)) was introduced for rapid estimation, which could be suitable for High-throughput Phenotyping. We investigated the potential of NPQ(T) to be used for testing plant genetic resources of chickpea under drought stress with non-invasive High-throughput Phenotyping complemented with yield traits. Besides a high correlation between the hundred-seed-weight and the Estimated Biovolume, significant differences were observed between the two types of chickpea desi and kabuli for Estimated Biovolume and NPQ(T). Desi was able to maintain the Estimated Biovolume significantly better under drought stress. One reason could be the effective dissipation of excess excitation energy in photosystem II, which can be efficiently measured as NPQ(T). Screening of plant genetic resources for photosynthetic performance could take pre-breeding to a higher level and can be implemented in a variety of studies, such as here with drought stress or under fluctuating light in a High-throughput Phenotyping manner using NPQ(T).


Assuntos
Cicer , Secas , Fenótipo , Fotossíntese , Complexo de Proteína do Fotossistema II , Estresse Fisiológico , Cicer/fisiologia , Cicer/genética , Cicer/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
18.
Curr Biol ; 34(3): 557-567.e4, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232731

RESUMO

The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.


Assuntos
Microbiota , Phaseolus , Domesticação , Fenótipo , Agricultura , Phaseolus/genética , Sementes/genética
19.
New Phytol ; 197(1): 300-313, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23126683

RESUMO

We have studied the nucleotide diversity of common bean, Phaseolus vulgaris, which is characterized by two independent domestications in two geographically distinct areas: Mesoamerica and the Andes. This provides an important model, as domestication can be studied as a replicate experiment. We used nucleotide data from five gene fragments characterized by large introns to analyse 214 accessions (102 wild and 112 domesticated). The wild accessions represent a cross-section of the entire geographical distribution of P. vulgaris. A reduction in genetic diversity in both of these gene pools was found, which was three-fold greater in Mesoamerica compared with the Andes. This appears to be a result of a bottleneck that occurred before domestication in the Andes, which strongly impoverished this wild germplasm, leading to the minor effect of the subsequent domestication bottleneck (i.e. sequential bottleneck). These findings show the importance of considering the evolutionary history of crop species as a major factor that influences their current level and structure of genetic diversity. Furthermore, these data highlight a single domestication event within each gene pool. Although the findings should be interpreted with caution, this evidence indicates the Oaxaca valley in Mesoamerica, and southern Bolivia and northern Argentina in South America, as the origins of common bean domestication.


Assuntos
Pool Gênico , Genes de Plantas , Variação Genética , Phaseolus/genética , América Central , Biologia Computacional/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Evolução Molecular , Fluxo Gênico , Loci Gênicos , Haplótipos , Endogamia/métodos , Íntrons , Phaseolus/crescimento & desenvolvimento , Filogeografia , Reação em Cadeia da Polimerase , Seleção Genética , América do Sul
20.
Plants (Basel) ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571019

RESUMO

Precise and high-throughput phenotyping (HTP) of vegetative drought tolerance in chickpea plant genetic resources (PGR) would enable improved screening for genotypes with low relative loss of biomass formation and reliable physiological performance. It could also provide a basis to further decipher the quantitative trait drought tolerance and recovery and gain a better understanding of the underlying mechanisms. In the context of climate change and novel nutritional trends, legumes and chickpea in particular are becoming increasingly important because of their high protein content and adaptation to low-input conditions. The PGR of legumes represent a valuable source of genetic diversity that can be used for breeding. However, the limited use of germplasm is partly due to a lack of available characterization data. The development of HTP systems offers a perspective for the analysis of dynamic plant traits such as abiotic stress tolerance and can support the identification of suitable genetic resources with a potential breeding value. Sixty chickpea accessions were evaluated on an HTP system under contrasting water regimes to precisely evaluate growth, physiological traits, and recovery under optimal conditions in comparison to drought stress at the vegetative stage. In addition to traits such as Estimated Biovolume (EB), Plant Height (PH), and several color-related traits over more than forty days, photosynthesis was examined by chlorophyll fluorescence measurements on relevant days prior to, during, and after drought stress. With high data quality, a wide phenotypic diversity for adaptation, tolerance, and recovery to drought was recorded in the chickpea PGR panel. In addition to a loss of EB between 72% and 82% after 21 days of drought, photosynthetic capacity decreased by 16-28%. Color-related traits can be used as indicators of different drought stress stages, as they show the progression of stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA