Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Z Gastroenterol ; 62(7): 1060-1073, 2024 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-38604221

RESUMO

Phytotherapeutics are gaining influence in the treatment of gastroenterological diseases. Their popularity and growing evidence of efficacy contribute to their integration into medical guidelines. A systematic screening identified recommended phytotherapeutic approaches. Based on current scientific data, some recommendations for the use of phytotherapeutic agents are given. For irritable bowel syndrome the use of peppermint oil is "strongly recommended", especially for pain and flatulence. Other phytotherapeutics such as STW-5, Tibetan Padma Lax or warm caraway oil pads have proven effective in alleviating symptoms. It is "recommended" to integrate them into the treatment concept. For chronic constipation, 30g of fiber per day is recommended. Best data exists for plantago psyllium with moderate evidence and chicory inulin. In case of ulcerative colitis, plantago psyllium as well as the combination of myrrh, chamomile flower extract, and coffee charcoal can be used as a complementary treatment in maintaining remission. There is also an "open recommendation" for curcumin for both, remission induction and maintenance. Some phytotherapeutic treatments (e.g., Artemisia absintium, Boswellia serata) show evidence of effectiveness for the treatment of Crohn's disease, but data are not yet sufficient for recommendations. Cannabis-based medicines can be considered for abdominal pain and clinically relevant appetite loss if standard therapy is ineffective or contraindicated, but they should not be used for acute inflammation in active Crohn's disease. Further recommendations for other gastroenterological diseases are discussed. The safety and tolerability of the phytotherapeutics were rated as predominantly "very good" to "acceptable". Some clear recommendations for the use of phytotherapeutics to treat gastroenterological diseases show their great potential. Due to their wide range of effects, phytotherapeutics can be used very well as a complement to conventional medicines in case of complex regulatory disorders. However, further methodologically well-conducted impact studies would be helpful in order to be able to make further recommendations.


Assuntos
Medicina Baseada em Evidências , Gastroenteropatias , Fitoterapia , Guias de Prática Clínica como Assunto , Humanos , Fitoterapia/normas , Fitoterapia/métodos , Gastroenteropatias/terapia , Gastroenteropatias/tratamento farmacológico , Resultado do Tratamento , Alemanha
2.
Gastroenterology ; 157(5): 1310-1322.e13, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352002

RESUMO

BACKGROUND & AIMS: Interferon lambda (IFNL) is expressed at high levels by intestinal epithelial cells (IECs) and mucosal immune cells in response to infection and inflammation. We investigated whether IFNL might contribute to pathogenesis of Crohn's disease (CD). METHODS: We obtained serum samples and terminal ileum biopsies from 47 patients with CD and 16 healthy individuals (controls). We measured levels of IFNL by enzyme-linked immunosorbent assay and immunohistochemistry and location of expression by confocal microscopy. Activation of IFNL signaling via STAT1 was measured in areas of no, mild, moderate, and severe inflammation and correlated with Paneth cell homeostasis and inflammation. IFNL expression and function were studied in wild-type mice and mice with intestinal epithelial cell-specific (ΔIEC) disruption or full-body disruption of specific genes (Mlkl-/-, Stat1ΔIEC, Casp8ΔIEC, Casp8ΔIECRipk3-/-, Casp8ΔIECTnfr-/-, Casp8ΔIECMlkl-/-, and Nod2-/- mice). Some mice were given tail vein injections of a vector encoding a secreted form of IFNL. Intestinal tissues were collected from mice and analyzed by immunohistochemistry and immunoblots. We generated 3-dimensional small intestinal organoids from mice and studied the effects of IFNL and inhibitors of STAT-signaling pathway. RESULTS: Patients with CD had significant increases in serum and ileal levels of IFNL compared with controls. Levels of IFNL were highest in ileum tissues with severe inflammation. High levels of IFNL associated with a reduced number of Paneth cells and increased cell death at the crypt bottom in inflamed ileum samples. Intestinal tissues from the ileum of wild-type mice injected with a vector expressing IFNL had reduced numbers of Paneth cells. IFNL-induced death of Paneth cells in mice did not occur via apoptosis, but required Mixed Lineage Kinase Domain Like (MLKL) and activation of Signal transducer and activator of transcription 1 (STAT1). In organoids, inhibitors of Janus kinase (JAK) signaling via STAT1 (glucocorticoids, tofacitinib, or filgotinib) reduced expression of proteins that mediate cell death and prevented Paneth cell death. CONCLUSIONS: Levels of IFNL are increased in serum and inflamed ileal tissues from patients with CD and associated with a loss of Paneth cells. Expression of a secreted form of IFNL in mice results in loss of Paneth cells from intestinal tissues, via STAT1 and MLKL, controlled by caspase 8. Strategies to reduce IFNL or block its effects might be developed for treatment of patients with CD affecting the terminal ileum.


Assuntos
Doença de Crohn/metabolismo , Íleo/metabolismo , Interferons/metabolismo , Interleucinas/metabolismo , Celulas de Paneth/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Doença de Crohn/imunologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Humanos , Íleo/imunologia , Íleo/patologia , Interferons/genética , Interleucinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Celulas de Paneth/imunologia , Celulas de Paneth/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos , Regulação para Cima
3.
J Extracell Vesicles ; 10(12): e12159, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664784

RESUMO

The intestinal microbiota influences mammalian host physiology in health and disease locally in the gut but also in organs devoid of direct contact with bacteria such as the liver and brain. Extracellular vesicles (EVs) or outer membrane vesicles (OMVs) released by microbes are increasingly recognized for their potential role as biological shuttle systems for inter-kingdom communication. However, physiologically relevant evidence for the transfer of functional biomolecules from the intestinal microbiota to individual host cells by OMVs in vivo is scarce. By introducing Escherichia coli engineered to express Cre-recombinase (E. coliCre ) into mice with a Rosa26.tdTomato-reporter background, we leveraged the Cre-LoxP system to report the transfer of bacterial OMVs to recipient cells in vivo. Colonizing the intestine of these mice with E. coliCre , resulted in Cre-recombinase induced fluorescent reporter gene-expression in cells along the intestinal epithelium, including intestinal stem cells as well as mucosal immune cells such as macrophages. Furthermore, even far beyond the gut, bacterial-derived Cre induced extended marker gene expression in a wide range of host tissues, including the heart, liver, kidney, spleen, and brain. Together, our findings provide a method and proof of principle that OMVs can serve as a biological shuttle system for the horizontal transfer of functional biomolecules between bacteria and mammalian host cells.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Animais , Camundongos
4.
Inflamm Bowel Dis ; 26(1): 66-79, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276162

RESUMO

Crohn's disease (CD) patients can be grouped into patients suffering from ileitis, ileocolitis, jejunoileitis, and colitis. The pathophysiological mechanism underlying this regional inflammation is still unknown. Although most murine models of inflammatory bowel disease (IBD) develop inflammation in the colon, there is an unmet need for novel models that recapitulate the spontaneous and fluctuating nature of inflammation as seen in CD. Recently, mice with an intestinal epithelial cell-specific deletion for Caspase-8 (Casp8ΔIEC mice), which are characterized by cell death-driven ileitis and disrupted Paneth cell homeostasis, have been identified as a novel model of CD-like ileitis. Here we uncovered that genetic susceptibility alone is sufficient to drive ileitis in Casp8ΔIEC mice. In sharp contrast, environmental factors, such as a disease-relevant microbial flora, determine colonic inflammation. Accordingly, depending on the microbial environment, isogenic Casp8ΔIEC mice either exclusively developed ileitis or suffered from pathologies in several parts of the gastrointestinal tract. Colitis in these mice was characterized by massive epithelial cell death, leading to spread of commensal gut microbes to the extra-intestinal space and hence an aberrant activation of the systemic immunity. We further uncovered that Casp8ΔIEC mice show qualitative and quantitative changes in the intestinal microbiome associated with an altered mucosal and systemic immune response. In summary, we identified that inflammation in this murine model of CD-like inflammation is characterized by an immune reaction, presumably directed against a disease-relevant microbiota in a genetically susceptible host, with impaired mucosal barrier function and bacterial clearance at the epithelial interface.


Assuntos
Doença de Crohn/microbiologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Ileíte/microbiologia , Mucosa Intestinal/microbiologia , Animais , Caspase 8 , Doença de Crohn/genética , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Ileíte/genética , Inflamação , Mucosa Intestinal/imunologia , Camundongos
5.
Cell Death Dis ; 10(12): 878, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754092

RESUMO

During viral infections viruses express molecules that interfere with the host-cell death machinery and thus inhibit cell death responses. For example the viral FLIP (vFLIP) encoded by Kaposi's sarcoma-associated herpesvirus interacts and inhibits the central cell death effector, Caspase-8. In order to analyze the impact of anti-apoptotic viral proteins, like vFlip, on liver physiology in vivo, mice expressing vFlip constitutively in hepatocytes (vFlipAlbCre+) were generated. Transgenic expression of vFlip caused severe liver tissue injury accompanied by massive hepatocellular necrosis and inflammation that finally culminated in early postnatal death of mice. On a molecular level, hepatocellular death was mediated by RIPK1-MLKL necroptosis driven by an autocrine TNF production. The loss of hepatocytes was accompanied by impaired bile acid production and disruption of the bile duct structure with impact on the liver-gut axis. Notably, embryonic development and tissue homeostasis were unaffected by vFlip expression. In summary our data uncovered that transgenic expression of vFlip can cause severe liver injury in mice, culminating in multiple organ insufficiency and death. These results demonstrate that viral cell death regulatory molecules exhibit different facets of activities beyond the inhibition of cell death that may merit more sophisticated in vitro and in vivo analysis.


Assuntos
Hepatócitos/metabolismo , Hepatócitos/patologia , Falência Hepática/metabolismo , Proteínas Virais/biossíntese , Animais , Morte Celular/fisiologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Falência Hepática/genética , Falência Hepática/patologia , Camundongos , Camundongos Transgênicos , Necrose , Transdução de Sinais , Proteínas Virais/genética
6.
Proteomes ; 6(2)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673200

RESUMO

Corynebacterium ulcerans is an emerging pathogen, which is increasingly recognized as an etiological agent of diphtheria, but can also evoke ulcers of the skin and systemic infections in humans. Besides man, the bacteria can colonize a wide variety of different animals, including cattle and pet animals, which might serve as a reservoir for human infections. In this study, surface-located proteins and the exoproteome of two Corynebacterium ulcerans strains were analyzed, since these may have key roles in the interaction of the pathogen with host cells. Strain 809 was isolated from a fatal case of human respiratory tract infection, while strain BR-AD22 was isolated from a nasal swap of an asymptomatic dog. While a very similar pattern of virulence factors was observed in the culture supernatant and surface protein fractions of the two strains, proteome analyses revealed a higher stability of 809 cells compared to strain BR-AD22. During exponential growth, 17% of encoded proteins of strain 809 were detectable in the medium, while 38% of the predicted proteins encoded by the BR-AD22 chromosome were found. Furthermore, the data indicate differential expression of phospholipase D and a cell wall-associated hydrolase, since these were only detected in strain BR-AD22.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA