Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 11(3): e1005062, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25803843

RESUMO

The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.


Assuntos
Síndrome de Down/genética , Monossomia/genética , Atividade Motora/genética , Força Muscular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cromossomos Humanos Par 21/genética , Modelos Animais de Doenças , Síndrome de Down/fisiopatologia , Metabolismo Energético/genética , Fator de Transcrição de Proteínas de Ligação GA/genética , Humanos , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , ATPases Mitocondriais Próton-Translocadoras/genética , Monossomia/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor Nuclear
2.
Neurobiol Dis ; 63: 92-106, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291518

RESUMO

PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Recém-Nascidos , Cerebelo/citologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Quinoxalinas/farmacologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Valina/análogos & derivados , Valina/farmacologia
3.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404338

RESUMO

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Assuntos
Comportamento Animal/fisiologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Adulto , Idoso , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Eletrofisiologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofia Miotônica/complicações , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Expansão das Repetições de Trinucleotídeos
4.
J Neurosci ; 32(26): 9007-22, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745500

RESUMO

Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.


Assuntos
Proteínas de Transporte/metabolismo , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Neurônios/ultraestrutura , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Ansiedade/genética , Aprendizagem da Esquiva/fisiologia , Caderinas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Condicionamento Psicológico/fisiologia , Estimulação Elétrica , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/fisiologia , Proteínas do Olho/genética , Medo/fisiologia , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/deficiência , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , N-Metilaspartato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , RNA Mensageiro , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Coloração pela Prata , Estatísticas não Paramétricas , Sinapses/genética , Sinaptossomos/metabolismo , Transfecção , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
5.
J Neurosci ; 32(6): 1962-8, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323709

RESUMO

Vesicular (v)- and target (t)-SNARE proteins assemble in SNARE complex to mediate membrane fusion. Tetanus neurotoxin-insensitive vesicular-associated membrane protein (TI-VAMP/VAMP7), a vesicular SNARE expressed in several cell types including neurons, was previously shown to play a major role in exocytosis involved in neurite growth in cultured neurons. Here we generated a complete constitutive knock-out by deleting the exon 3 of Vamp7. Loss of TI-VAMP expression did not lead to any striking developmental or neurological defect. Knock-out mice displayed decreased brain weight and increased third ventricle volume. Axon growth appeared normal in cultured knock-out neurons. Behavioral characterization unraveled that TI-VAMP knock-out was associated with increased anxiety. Our results thus suggest compensatory mechanisms allowing the TI-VAMP knock-out mice to fulfill major developmental processes. The phenotypic traits unraveled here further indicate an unexpected role of TI-VAMP-mediated vesicular traffic in anxiety and suggest a role for TI-VAMP in higher brain functions.


Assuntos
Ansiedade/genética , Metaloendopeptidases , Proteínas R-SNARE/deficiência , Proteínas R-SNARE/genética , Toxina Tetânica , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Masculino , Metaloendopeptidases/administração & dosagem , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coelhos , Toxina Tetânica/administração & dosagem
6.
Hum Mol Genet ; 18(24): 4756-69, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19783846

RESUMO

Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1-U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1-U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1-U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1-U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Modelos Animais de Doenças , Síndrome de Down/genética , Lipoproteínas/genética , Camundongos , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Trissomia/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Ansiedade/genética , Sinapses Elétricas/fisiologia , Comportamento Exploratório , Deleção de Genes , Dosagem de Genes , Duplicação Gênica , Código Genético , Humanos , Aprendizagem , Memória , Camundongos Mutantes , Atividade Motora/genética , Fator de Processamento U2AF
7.
Front Behav Neurosci ; 13: 228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680892

RESUMO

Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability (ID) associated with autistic-like behaviors, is characterized by dys-sensitivity to sensory stimuli, especially vision. In the absence of Fragile Mental Retardation Protein (FMRP), both retinal and cerebral structures of the visual pathway are impaired, suggesting that perception and integration of visual stimuli are altered. However, behavioral consequences of these defects remain unknown. In this study, we used male Fmr1 -/y mice to further define visual disturbances from a behavioral perspective by focusing on three traits characterizing visual modality: perception of depth, contrasts and movements. We performed specific tests (Optomotor Drum, Visual Cliff) to evaluate these visual modalities, their evolution from youth to adulthood, and to assess their involvement in a cognitive task. We show that Fmr1 -/y mice exhibit alteration in their visual skills, displaying impaired perspective perception, a drop in their ability to understand a moving contrasted pattern, and a defect in contrasts discrimination. Interestingly, Fmr1 -/y phenotypes remain stable over time from adolescence to late adulthood. Besides, we report that color and shape are meaningful for the achievement of a cognitive test involving object recognition. Altogether, these results underline the significance of visual behavior alterations in FXS conditions and relevance of assessing visual skills in neuropsychiatric models before performing behavioral tasks, such as cognitive assessments, that involve visual discrimination.

8.
J Neurosci ; 27(5): 1063-71, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17267560

RESUMO

Engrailed1 and Engrailed2 (En1 and En2) are two developmental genes of the homeogene family expressed in the developing midbrain. En1 and, to a lesser degree, En2 also are expressed in the adult substantia nigra (SN) and ventral tegmental area (VTA), two dopaminergic (DA) nuclei of the ventral midbrain. In an effort to study En1/2 adult functions, we have analyzed the phenotype of mice lacking one En1 allele in an En2 wild-type context. We show that in this mutant the number of DA neurons decreases slowly between 8 and 24 weeks after birth to reach a stable 38 and 23% reduction in the SN and VTA, respectively, and that neuronal loss can be antagonized by En2 recombinant protein infusions in the midbrain. These loss and gain of function experiments firmly establish that En1/2 is a true survival factor for DA neurons in vivo. Neuronal death in the mutant is paralleled by a 37% decrease in striatal DA, with no change in serotonin content. Using established protocols, we show that, compared with their wild-type littermates, En1+/- mice have impaired motor skills, an anhedonic-like behavior, and an enhanced resignation phenotype; they perform poorly in social interactions. However, these mice do not differ from their wild-type littermates in anxiety-measuring tests. Together, these results demonstrate that En1/2 genes have important adult physiological functions. They also suggest that mice lacking only one En1 allele could provide a novel model for the study of diseases associated with progressive DA cell death.


Assuntos
Dopamina/fisiologia , Triagem de Portadores Genéticos , Proteínas de Homeodomínio/genética , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Animais , Contagem de Células , Morte Celular/genética , Feminino , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/fisiologia , Masculino , Mesencéfalo/fisiologia , Camundongos , Camundongos Mutantes Neurológicos , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Análise de Sobrevida
9.
Parkinsonism Relat Disord ; 14 Suppl 2: S107-11, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18585951

RESUMO

Engrailed1 is a developmental gene of the homeogene family that controls the survival of midbrain dopaminergic neurons throughout life. Since these neurons have been crucially implicated in Parkinson's disease (PD), transgenic mice lacking one En1 allele could be of particular interest for the development of an animal model for PD. We showed in En1+/- mice, some traits reminiscent of PD such as (1) a progressive loss of mesencephalic dopaminergic (DA) neurons, and (2) motor deficits, anhedonia, decreased social interactions and depression-like behaviours. Further validation is needed, but these first results suggest that En1+/- mice could provide a promising model for the study of PD.


Assuntos
Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas de Homeodomínio/genética , Mesencéfalo/patologia , Neurônios/metabolismo , Doença de Parkinson , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Knockout , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Front Cell Neurosci ; 12: 96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681800

RESUMO

Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1-/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1-/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1-/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

11.
Elife ; 72018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30311906

RESUMO

Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.


Assuntos
Cerebelo/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Polissacarídeos/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Animais , Orientação de Axônios , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Cerebelo/embriologia , Grânulos Citoplasmáticos/metabolismo , Deleção de Genes , Glicosilação , Imunoglobulinas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos Knockout , Atividade Motora , Mutação/genética , Vias Neurais/metabolismo , Proteômica , Células de Purkinje/metabolismo , Reprodutibilidade dos Testes , Resposta a Proteínas não Dobradas
12.
Psychopharmacology (Berl) ; 193(2): 215-23, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17406857

RESUMO

RATIONALE: Impulsivity is a core symptom of attention deficit/hyperactivity disorder (ADHD). The spontaneously hypertensive rats (SHR) is a strain commonly used as an animal model of ADHD. However, there is no clear evidence that psychostimulants, which are used for treatment of ADHD, reduce impulsivity in SHR. Because ADHD mainly affects children, it may be relevant to study psychostimulants on juvenile animals. OBJECTIVES: Using tolerance to delay of reward as index of impulsivity, the effects of methylphenidate were assessed in adult SHR, Wistar Kyoto (WKY) and Wistar rats and in juvenile Wistar rats. MATERIALS AND METHODS: Animals were trained in a T-maze to choose between a small-but-immediate and a large-but-delayed reward. Adult SHR, WKY and Wistar rats were compared for their ability to tolerate a 15-s delay. The effect of methylphenidate on the tolerance to a 30-s delay was studied in adult rats of the three strains and in juvenile (4.5 to 6.5-week-old) Wistar rats. RESULTS: In adult rats, the waiting ability was lower in SHR than in control strains. Waiting ability was improved by methylphenidate (3 and 5 mg/kg) in juveniles, but not by methylphenidate (3 mg/kg) in adults. CONCLUSIONS: These data support the idea that SHR are more impulsive than control strains. However, at the dose studied, methylphenidate fails to improve tolerance to delay in adult rats whatever the strain used. The reduction of impulsivity induced by methylphenidate in juvenile Wistar rats indicates that juvenile animals may be suitable for testing the therapeutic potential of drugs intended to the treatment of ADHD in children.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Impulsivo/tratamento farmacológico , Metilfenidato/farmacologia , Fatores Etários , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Impulsivo/psicologia , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Especificidade da Espécie
13.
PLoS One ; 11(3): e0151242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26968030

RESUMO

Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Comportamento Animal/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Alcoolismo/patologia , Anfetamina/farmacologia , Animais , Ciproeptadina/farmacologia , Ciproeptadina/uso terapêutico , Etanol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Prazosina/farmacologia , Prazosina/uso terapêutico , Receptor 5-HT2A de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico
14.
Artigo em Inglês | MEDLINE | ID: mdl-15951087

RESUMO

The effect of a sulbutiamine chronic treatment on memory was studied in rats with a spatial delayed-non-match-to-sample (DNMTS) task in a radial maze and a two trial object recognition task. After completion of training in the DNMTS task, animals were subjected for 9 weeks to daily injections of either saline or sulbutiamine (12.5 or 25 mg/kg). Sulbutiamine did not modify memory in the DNMTS task but improved it in the object recognition task. Dizocilpine, impaired both acquisition and retention of the DNMTS task in the saline-treated group, but not in the two sulbutiamine-treated groups, suggesting that sulbutiamine may counteract the amnesia induced by a blockade of the N-methyl-D-aspartate glutamate receptors. Taken together, these results are in favor of a beneficial effect of sulbutiamine on working and episodic memory.


Assuntos
Amnésia/tratamento farmacológico , Tempo de Reação/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Tiamina/análogos & derivados , Amnésia/induzido quimicamente , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Maleato de Dizocilpina , Relação Dose-Resposta a Droga , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tiamina/administração & dosagem , Fatores de Tempo
15.
Psychopharmacology (Berl) ; 232(17): 3269-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26037943

RESUMO

The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD.


Assuntos
Atenção/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Dextroanfetamina/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Tempo de Reação/efeitos dos fármacos
16.
Front Behav Neurosci ; 9: 267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539088

RESUMO

Cognitive impairment in Down syndrome (DS) has been linked to increased synaptic inhibition. The underlying mechanisms remain unknown, but memory deficits are rescued in DS mouse models by drugs targeting GABA receptors. Similarly, administration of epigallocatechin gallate (EGCG)-containing extracts rescues cognitive phenotypes in Ts65Dn mice, potentially through GABA pathway. Some developmental and cognitive alterations have been traced to increased expression of the serine-threonine kinase DYRK1A on Hsa21. To better understand excitation/inhibition balance in DS, we investigated the consequences of long-term (1-month) treatment with EGCG-containing extracts in adult mBACtgDyrk1a mice that overexpress Dyrk1a. Administration of POL60 rescued components of GABAergic and glutamatergic pathways in cortex and hippocampus but not cerebellum. An intermediate dose (60 mg/kg) of decaffeinated green tea extract (MGTE) acted on components of both GABAergic and glutamatergic pathways and rescued behavioral deficits as demonstrated on the alternating paradigm, but did not rescue protein level of GABA-synthesizing GAD67. These results indicate that excessive synaptic inhibition in people with DS may be attributable, in large part, to increased DYRK1A dosage. Thus, controlling the level of active DYRK1A is a clear issue for DS therapy. This study also defines a panel of synaptic markers for further characterization of DS treatments in murine models.

17.
Behav Brain Res ; 155(1): 135-46, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15325787

RESUMO

Effects of unpredictable chronic mild stress (UCMS) on anhedonic-like behaviour, physical state, body weight, learning and memory were investigated in three strains of mice. These strains were chosen among 11 strains that were tested in a first experiment for their sucrose consumption and preference for sucrose solutions of different concentrations. In the second experiment, groups of mice of the CBA/H, C57BL/6 and DBA/2 strains were submitted to 7 weeks of UCMS. Measures of the sucrose consumption, the evaluation of the physical state and the measurement of body weight were weekly assessed. Following 4-week period of UCMS, sub-groups of stressed and non-stressed mice were submitted to the spontaneous alternation test in the Y-maze, and then to the water-maze test for spatial learning and memory. UCMS induced a significant decrease of the sucrose consumption in CBA/H and in C57BL/6 but not in DBA/2 mice. The UCMS effect on sucrose intake in CBA/H mice was associated with a body weight loss and a physical state degradation. Spatial learning in a water maze was not disturbed by UCMS, however, a long-term memory impairment was observed in CBA/H stressed mice during a probe test. In the Y-maze, UCMS did not modify spontaneous alternation. These results show both an anhedonic-like and an amnesic effect of UCMS in CBA/H mice. They also reveal a difference of sensitivity to UCMS according to the strain of mice.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Estresse Psicológico/fisiopatologia , Sacarose/farmacologia , Análise de Variância , Animais , Comportamento Animal , Distribuição de Qui-Quadrado , Doença Crônica , Relação Dose-Resposta a Droga , Comportamento Exploratório/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Especificidade da Espécie , Fatores de Tempo
18.
Mol Nutr Food Res ; 58(2): 278-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24039182

RESUMO

SCOPE: Trisomy for human chromosome 21 results in Down syndrome (DS), which is among the most complex genetic perturbations leading to intellectual disability. Accumulating data suggest that overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), is a critical pathogenic mechanisms in the intellectual deficit. METHODS AND RESULTS: Here we show that the green tea flavonol epigallocatechin-gallate (EGCG), a DYRK1A inhibitor, rescues the cognitive deficits of both segmental trisomy 16 (Ts65Dn) and transgenic mice overexpressing Dyrk1A in a trisomic or disomic genetic background, respectively. It also significantly reverses cognitive deficits in a pilot study in DS individuals with effects on memory recognition, working memory and quality of life. We used the mouse models to ensure that EGCG was able to reduce DYRK1A kinase activity in the hippocampus and found that it also induced significant changes in plasma homocysteine levels, which were correlated with Dyrk1A expression levels. Thus, we could use plasma homocysteine levels as an efficacy biomarker in our human study. CONCLUSION: We conclude that EGCG is a promising therapeutic tool for cognitive enhancement in DS, and its efficacy may depend of Dyrk1A inhibition.


Assuntos
Catequina/análogos & derivados , Cognição/efeitos dos fármacos , Síndrome de Down/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Adolescente , Adulto , Animais , Biomarcadores/sangue , Catequina/administração & dosagem , Cromossomos Humanos Par 16/genética , Modelos Animais de Doenças , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo , Fosforilação , Projetos Piloto , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Trissomia/genética , Adulto Jovem , Quinases Dyrk
19.
PLoS One ; 7(1): e29056, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253703

RESUMO

BACKGROUND: The cystathionine ß-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.


Assuntos
Encéfalo/fisiologia , Cistationina beta-Sintase/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animais , Comportamento Animal/fisiologia , Western Blotting , Dosagem de Genes , Humanos , Potenciação de Longa Duração/fisiologia , Redes e Vias Metabólicas , Metaboloma , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Fenótipo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Transgenes/genética
20.
Neurosci Lett ; 489(1): 20-4, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21129437

RESUMO

Impulsivity is a core symptom of Attention Deficit/Hyperactivity Disorder (ADHD). In the present study, we assessed the effects of two stimulants, methylphenidate and d-amphetamine and of two non stimulant noradrenaline reuptake inhibitors, atomoxetine and desipramine, on the tolerance to delay of reward, taken as an index of impulsivity, in juvenile Wistar rats. Animals were trained in a T-maze to choose between a small-and-immediate reward and a large-but-30s-delayed reward. The effects of drugs were studied on the performance of animals at 30-40 day of age. Methylphenidate (3mg/kg), atomoxetine (1mg/kg), d-amphetamine (1 and 2mg/kg) and desipramine (8 and 16mg/kg) increased the number of choices of the large-but-delayed reward, i.e. decreased impulsivity. Given that these drugs are commonly prescribed in ADHD, these data indicate that the T-maze procedure in juvenile animals may be suitable for testing the therapeutic potential of drugs intended to the treatment of ADHD in children.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Impulsivo/tratamento farmacológico , Animais , Cloridrato de Atomoxetina , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Desipramina/farmacologia , Dextroanfetamina/farmacologia , Masculino , Metilfenidato/farmacologia , Propilaminas/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA