Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 10(6): 1582-90, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18331336

RESUMO

Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.


Assuntos
Aerossóis , Archaea/classificação , Archaea/isolamento & purificação , Fontes Termais/microbiologia , Vapor , Archaea/citologia , California , Contagem de Células , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Havaí , Dados de Sequência Molecular , New Mexico , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/metabolismo , Wyoming
2.
Microbiologyopen ; 4(2): 267-281, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25565172

RESUMO

Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity.

3.
Environ Microbiol Rep ; 3(4): 491-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761312

RESUMO

In this study, we explored the possibility that dispersal from terrestrial subsurface sources 'seeds' the development of geothermal spring microbial assemblages. We combined microscopy and culture-independent molecular approaches to survey the bacterial diversity of spring source waters in Yellowstone National Park, Lassen Volcanic National Park, and Russia's Kamchatka peninsula. Microscopic analysis uncovered clear evidence of microbial cells from spring sources in all three regions. Analysis of source water phylogenetic diversity identified members of all bacteria groups found previously in downstream sediments, as well as many other phylogenetic groups. Closely related or identical 16S sequences were determined from the source waters of geographically distant, chemically distinct springs, and we found no association between spring water chemistry and microbial diversity. In the source waters of two different Yellowstone springs, we also discovered a phylogenetic group of uncultured Firmicutes never before reported in geothermal habitats that were closely related to uncultured bacteria found in the hyper-arid Atacama Desert. Altogether, our results suggest geothermal features can be connected via the subsurface over long distances and that subsurface sources provide a potentially diverse source of microorganisms for downstream surface mat communities.

4.
FEMS Microbiol Ecol ; 76(1): 74-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223339

RESUMO

Fumaroles, commonly called steam vents, are ubiquitous features of geothermal habitats. Recent studies have discovered microorganisms in condensed fumarole steam, but fumarole deposits have proven refractory to DNA isolation. In this study, we report the development of novel DNA isolation approaches for fumarole deposit microbial community analysis. Deposit samples were collected from steam vents and caves in Hawaii Volcanoes National Park, Yellowstone National Park and Lassen Volcanic National Park. Samples were analyzed by X-ray microanalysis and classified as nonsulfur, sulfur or iron-dominated steam deposits. We experienced considerable difficulty in obtaining high-yield, high-quality DNA for cloning: only half of all the samples ultimately yielded sequences. Analysis of archaeal 16S rRNA gene sequences showed that sulfur steam deposits were dominated by Sulfolobus and Acidianus, while nonsulfur deposits contained mainly unknown Crenarchaeota. Several of these novel Crenarchaeota lineages were related to chemoautotrophic ammonia oxidizers, indicating that fumaroles represent a putative habitat for ammonia-oxidizing Archaea. We also generated archaeal and bacterial enrichment cultures from the majority of the deposits and isolated members of the Sulfolobales. Our results provide the first evidence of Archaea in geothermal steam deposits and show that fumaroles harbor diverse and novel microbial lineages.


Assuntos
Crenarchaeota/classificação , Ecossistema , Vapor , Crenarchaeota/genética , Crenarchaeota/isolamento & purificação , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , Microanálise por Sonda Eletrônica , Havaí , Ferro/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/química
5.
Appl Environ Microbiol ; 73(8): 2612-23, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17220248

RESUMO

Acidic thermal springs offer ideal environments for studying processes underlying extremophile microbial diversity. We used a carefully designed comparative analysis of acidic thermal springs in Yellowstone National Park to determine how abiotic factors (chemistry and temperature) shape acidophile microbial communities. Small-subunit rRNA gene sequences were PCR amplified, cloned, and sequenced, by using evolutionarily conserved bacterium-specific primers, directly from environmental DNA extracted from Amphitheater Springs and Roaring Mountain sediment samples. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and colorimetric assays were used to analyze sediment chemistry, while an optical emission spectrometer was used to evaluate water chemistry and electronic probes were used to measure the pH, temperature, and E(h) of the spring waters. Phylogenetic-statistical analyses found exceptionally strong correlations between bacterial community composition and sediment mineral chemistry, followed by weaker but significant correlations with temperature gradients. For example, sulfur-rich sediment samples contained a high diversity of uncultured organisms related to Hydrogenobaculum spp., while iron-rich sediments were dominated by uncultured organisms related to a diverse array of gram-positive iron oxidizers. A detailed analysis of redox chemistry indicated that the available energy sources and electron acceptors were sufficient to support the metabolic potential of Hydrogenobaculum spp. and iron oxidizers, respectively. Principal-component analysis found that two factors explained 95% of the genetic diversity, with most of the variance attributable to mineral chemistry and a smaller fraction attributable to temperature.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Sedimentos Geológicos/microbiologia , Fontes Termais/química , Fontes Termais/microbiologia , Bactérias/genética , Colorimetria , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Microscopia Eletrônica de Varredura , Minerais/análise , Minerais/química , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria por Raios X , Temperatura , Estados Unidos , Microbiologia da Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA