Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 131(43): 15578-9, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19810729

RESUMO

We describe the first example of redox catalysis using a dissolved electroactive nanoparticle, based on the oxidation of water by electrogenerated IrO(x) nanoparticles containing Ir(VI) states, in pH 13 solutions of 1.6 +/- 0.6 nm (dia.) Ir(IV)O(x) nanoparticles capped solely by hydroxide. At potentials (ca. +0.45 V) higher than the mass transport-controlled plateau of the nanoparticle Ir(V/IV) wave, rising large redox catalytic currents reflect electrochemical generation of Ir(VI) states, which by +0.55 V and onward to +1.0 V are shown by rotated ring disk electrode experiments to lead with 100% current efficiency to the oxidation of water to O(2). O(2) production at +0.55 V corresponds to an overpotential eta of only 0.29 V, relative to thermodynamic expectations of the four electron H(2)O-->O(2) reaction. The Ir site turnover frequency (TO, mol O(2)/Ir sites/s) is 8-11 s(-1). Controlled potential coulometry shows that all Ir sites in these nanoparticles (average 66 Ir each) are electroactive, meaning that the nanoparticles are small enough to allow the required electron and proton transport throughout. Both the overpotential and TO values are nearly the same as those observed previously for films electroflocculated from similar IrO(x) nanoparticles, providing the first comparison of electrocatalysis by nanoparticle films with redox catalysis by dissolved, diffusing nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA