Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413593

RESUMO

MVA-based monovalent eastern equine encephalitis virus (MVA-BN-EEEV) and multivalent western, eastern, and Venezuelan equine encephalitis virus (MVA-BN-WEV) vaccines were evaluated in the cynomolgus macaque aerosol model of EEEV infection. Macaques vaccinated with two doses of 5 × 108 infectious units of the MVA-BN-EEEV or MVA-BN-WEV vaccine by the intramuscular route rapidly developed robust levels of neutralizing antibodies to EEEV that persisted at high levels until challenge at day 84 via small particle aerosol delivery with a target inhaled dose of 107 PFU of EEEV FL93-939. Robust protection was observed, with 7/8 animals receiving MVA-BN-EEEV and 100% (8/8) animals receiving MVA-BN-WEV surviving while only 2/8 mock vaccinated controls survived lethal challenge. Complete protection from viremia was afforded by both vaccines, with near complete protection from vRNA loads in tissues and any pathologic evidence of central nervous system damage. Overall, the results indicate both vaccines are effective in eliciting an immune response that is consistent with protection from aerosolized EEEV-induced disease.

2.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675952

RESUMO

This study investigates the roles of T, B, and Natural Killer (NK) cells in the pathogenesis of severe COVID-19, utilizing mouse-adapted SARS-CoV-2-MA30 (MA30). To evaluate this MA30 mouse model, we characterized MA30-infected C57BL/6 mice (B6) and compared them with SARS-CoV-2-WA1 (an original SARS-CoV-2 strain) infected K18-human ACE2 (K18-hACE2) mice. We found that the infected B6 mice developed severe peribronchial inflammation and rapid severe pulmonary edema, but less lung interstitial inflammation than the infected K18-hACE2 mice. These pathological findings recapitulate some pathological changes seen in severe COVID-19 patients. Using this MA30-infected mouse model, we further demonstrate that T and/or B cells are essential in mounting an effective immune response against SARS-CoV-2. This was evident as Rag2-/- showed heightened vulnerability to infection and inhibited viral clearance. Conversely, the depletion of NK cells did not significantly alter the disease course in Rag2-/- mice, underscoring the minimal role of NK cells in the acute phase of MA30-induced disease. Together, our results indicate that T and/or B cells, but not NK cells, mitigate MA30-induced disease in mice and the infected mouse model can be used for dissecting the pathogenesis and immunology of severe COVID-19.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Matadoras Naturais , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Animais , Células Matadoras Naturais/imunologia , COVID-19/imunologia , COVID-19/virologia , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Camundongos Knockout , Humanos , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Linfócitos B/imunologia , Feminino , Linfócitos T/imunologia
3.
Viruses ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066199

RESUMO

Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.


Assuntos
Coinfecção , Inflamação , Macaca mulatta , Malária , Neutrófilos , Plasmodium , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Coinfecção/tratamento farmacológico , Coinfecção/parasitologia , Coinfecção/virologia , Malária/tratamento farmacológico , Malária/imunologia , Malária/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Projetos Piloto , Neutrófilos/imunologia , Antirretrovirais/uso terapêutico , Carga Viral , Biomarcadores/sangue , Citocinas/sangue , Modelos Animais de Doenças , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia
4.
Viruses ; 16(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066335

RESUMO

The effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. In this pilot study, we exposed two pigtail macaques (PTMs) chronically infected with SIVmac239, exhibiting from very low to no CD4 T cells across all compartments, to SARS-CoV-2. We monitored the disease progression, viral replication, and evolution, and compared these outcomes with SIV-naïve PTMs infected with SARS-CoV-2. No overt signs of COVID-19 disease were observed in either animal, and the SARS-CoV-2 viral kinetics and evolution in the SIVmac239 PTMs were indistinguishable from those in the SIV-naïve PTMs in all sampled mucosal sites. However, the single-cell RNA sequencing of bronchoalveolar lavage cells revealed an infiltration of functionally inert monocytes after SARS-CoV-2 infection. Critically, neither of the SIV-infected PTMs mounted detectable anti-SARS-CoV-2 T-cell responses nor anti-SARS-CoV-2 binding or neutralizing antibodies. Thus, HIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants but may remove the ability of infected individuals to mount adaptive immune responses against SARS-CoV-2.


Assuntos
COVID-19 , Coinfecção , Modelos Animais de Doenças , SARS-CoV-2 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/imunologia , COVID-19/imunologia , COVID-19/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , SARS-CoV-2/imunologia , Coinfecção/imunologia , Coinfecção/virologia , Replicação Viral , Macaca nemestrina , Projetos Piloto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Carga Viral , Linfócitos T CD4-Positivos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA