Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem ; 68(1): 172-180, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34718481

RESUMO

BACKGROUND: The ability to control the spread of COVID-19 continues to be hampered by a lack of rapid, scalable, and easily deployable diagnostic solutions. METHODS: We developed a diagnostic method based on CRISPR (clustered regularly interspaced short palindromic repeats) that can deliver sensitive, specific, and high-throughput detection of Sudden Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). The assay utilizes SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) for the qualitative detection of SARS-CoV-2 RNA and may be performed directly on a swab or saliva sample without nucleic acid extraction. The assay uses a 384-well format and provides results in <1 hour. RESULTS: Assay performance was evaluated with 105 (55 negative, 50 positive) remnant SARS-CoV-2 specimens previously tested using Food and Drug Administration emergency use authorized assays and retested with a modified version of the Centers for Disease Control and Prevention (CDC) quantitative PCR with reverse transcription (RT-qPCR) assay. When combined with magnetic bead-based extraction, the high-throughput SHERLOCK SARS-CoV-2 assay was 100% concordant (n = 60) with the CDC RT-qPCR. When used with direct sample addition the high-throughput assay was also 100% concordant with the CDC RT-qPCR direct method (n = 45). With direct saliva sample addition, the negative and positive percentage agreements were 100% (15/15, 95% CI: 81.8-100%) and 88% (15/17, 95% CI: 63.6-98.5%), respectively, compared with results from a collaborating clinical laboratory. CONCLUSIONS: This high-throughput assay identifies SARS-CoV-2 from patient samples with or without nucleic acid extraction with high concordance to RT-qPCR methods. This test enables high complexity laboratories to rapidly increase their testing capacities with simple equipment.


Assuntos
Teste para COVID-19/métodos , COVID-19 , Sistemas CRISPR-Cas , COVID-19/diagnóstico , Ensaios de Triagem em Larga Escala , Humanos , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
2.
Nature ; 477(7365): 471-6, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21918511

RESUMO

Recent advances in DNA synthesis technology have enabled the construction of novel genetic pathways and genomic elements, furthering our understanding of system-level phenomena. The ability to synthesize large segments of DNA allows the engineering of pathways and genomes according to arbitrary sets of design principles. Here we describe a synthetic yeast genome project, Sc2.0, and the first partially synthetic eukaryotic chromosomes, Saccharomyces cerevisiae chromosome synIXR, and semi-synVIL. We defined three design principles for a synthetic genome as follows: first, it should result in a (near) wild-type phenotype and fitness; second, it should lack destabilizing elements such as tRNA genes or transposons; and third, it should have genetic flexibility to facilitate future studies. The synthetic genome features several systemic modifications complying with the design principles, including an inducible evolution system, SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution). We show the utility of SCRaMbLE as a novel method of combinatorial mutagenesis, capable of generating complex genotypes and a broad variety of phenotypes. When complete, the fully synthetic genome will allow massive restructuring of the yeast genome, and may open the door to a new type of combinatorial genetics based entirely on variations in gene content and copy number.


Assuntos
Cromossomos Artificiais de Levedura/genética , Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Biologia Sintética/métodos , Sítios de Ligação Microbiológicos/genética , Evolução Molecular Direcionada/métodos , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Aptidão Genética/genética , Genoma Fúngico/genética , Genótipo , Haploidia , Dados de Sequência Molecular , Mutagênese/genética , Fenótipo , RNA Fúngico/análise , RNA Fúngico/genética , Saccharomyces cerevisiae/classificação
3.
J Mol Diagn ; 25(7): 428-437, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088139

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for simple, low-cost, and scalable diagnostics that can be widely deployed for rapid testing. Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have emerged as a promising technology, but its implementation in clinical laboratories has been limited by the requirement of a separate amplification step prior to CRISPR-associated (Cas) enzyme-based detection. This article reports the discovery of two novel Cas12 enzymes (SLK9 and SLK5-2) that exhibit enzymatic activity at 60°C, which, when combined with loop-mediated isothermal amplification (LAMP), enable a real-time, single-step nucleic acid detection method [real-time SHERLOCK (real-time SLK)]. Real-time SLK was demonstrated to provide accurate results comparable to those from real-time quantitative RT-PCR in clinical samples, with 100% positive and 100% negative percent agreement. The method is further demonstrated to be compatible with direct testing (real-time SLK Direct) of samples from anterior nasal swabs, without the need for standard nucleic acid extraction. Lastly, SLK9 was combined with either Alicyclobacillus acidoterrestris AacCas12b or with SLK5-2 to generate a real-time, multiplexed CRISPR-based diagnostic assay for the simultaneous detection of SARS-CoV-2 and a human-based control in a single reaction, with sensitivity down to 5 copies/µL and a time to result of under 30 minutes.


Assuntos
COVID-19 , Serviços de Laboratório Clínico , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Teste para COVID-19 , Técnicas de Amplificação de Ácido Nucleico/métodos
4.
Nat Biomed Eng ; 7(12): 1571-1582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37142844

RESUMO

Nucleic acid assays are not typically deployable in point-of-care settings because they require costly and sophisticated equipment for the control of the reaction temperature and for the detection of the signal. Here we report an instrument-free assay for the accurate and multiplexed detection of nucleic acids at ambient temperature. The assay, which we named INSPECTR (for internal splint-pairing expression-cassette translation reaction), leverages the target-specific splinted ligation of DNA probes to generate expression cassettes that can be flexibly designed for the cell-free synthesis of reporter proteins, with enzymatic reporters allowing for a linear detection range spanning four orders of magnitude and peptide reporters (which can be mapped to unique targets) enabling highly multiplexed visual detection. We used INSPECTR to detect a panel of five respiratory viral targets in a single reaction via a lateral-flow readout and ~4,000 copies of viral RNA via additional ambient-temperature rolling circle amplification of the expression cassette. Leveraging synthetic biology to simplify workflows for nucleic acid diagnostics may facilitate their broader applicability at the point of care.


Assuntos
Ácidos Nucleicos , RNA Viral , RNA Viral/genética , Temperatura , Contenções , Sondas de DNA
5.
Nature ; 439(7078): 861-4, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16372021

RESUMO

Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.


Assuntos
Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Modelos Genéticos , Células Eucarióticas/citologia , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Dinâmica Populacional , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 38(8): 2594-602, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20194119

RESUMO

The engineering of biological components has been facilitated by de novo synthesis of gene-length DNA. Biological engineering at the level of pathways and genomes, however, requires a scalable and cost-effective assembly of DNA molecules that are longer than approximately 10 kb, and this remains a challenge. Here we present the development of pairwise selection assembly (PSA), a process that involves hierarchical construction of long-length DNA through the use of a standard set of components and operations. In PSA, activation tags at the termini of assembly sub-fragments are reused throughout the assembly process to activate vector-encoded selectable markers. Marker activation enables stringent selection for a correctly assembled product in vivo, often obviating the need for clonal isolation. Importantly, construction via PSA is sequence-independent, and does not require primary sequence modification (e.g. the addition or removal of restriction sites). The utility of PSA is demonstrated in the construction of a completely synthetic 91-kb chromosome arm from Saccharomyces cerevisiae.


Assuntos
DNA/síntese química , Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Sequência de Bases , Cromossomos Fúngicos , DNA/química
7.
Nucleic Acids Res ; 37(9): 3061-73, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304757

RESUMO

Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5', four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Domínio Catalítico , DNA/química , DNA/metabolismo , Modelos Biológicos , Mutação , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
8.
Trends Biotechnol ; 22(7): 321-4, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15245901

RESUMO

Synthetic biology is advancing rapidly as biologists, physicists and engineers are combining their efforts to understand and program cell function. By characterizing isolated genetic components or modules, experimentalists have paved the way for more quantitative analyses of genetic networks. A recent paper presents a method of computational, or in silico, evolution in which a set of components can evolve into networks that display desired behaviors. An integrated approach that includes a strategy of in silico design by evolution, together with efforts exploiting directed evolution in vivo, is likely to be the next step in the evolution of synthetic biology.


Assuntos
Algoritmos , Fenômenos Fisiológicos Celulares , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Humanos , Mapeamento de Interação de Proteínas/métodos
9.
Mol Cell ; 24(6): 853-65, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17189188

RESUMO

A more complete understanding of the causes and effects of cell-cell variability in gene expression is needed to elucidate whether the resulting phenotypes are disadvantageous or confer some adaptive advantage. Here we show that increased variability in gene expression, affected by the sequence of the TATA box, can be beneficial after an acute change in environmental conditions. We rationally introduce mutations within the TATA region of an engineered Saccharomyces cerevisiae GAL1 promoter and measure promoter responses that can be characterized as being either highly variable and rapid or steady and slow. We computationally illustrate how a stable transcription scaffold can result in "bursts" of gene expression, enabling rapid individual cell responses in the transient and increased cell-cell variability at steady state. We experimentally verify computational predictions that the rapid response and increased cell-cell variability enabled by TATA-containing promoters confer a clear benefit in the face of an acute environmental stress.


Assuntos
Simulação por Computador , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Heterogeneidade Genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , TATA Box/genética
10.
Cell ; 122(2): 147-9, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16051138

RESUMO

Stochastic gene expression has been implicated in a variety of cellular processes, including cell differentiation and disease. In this issue of Cell, take an integrated computational-experimental approach to study the Tat transactivation feedback loop of HIV-1. They show that fluctuations in a key regulator, Tat, in an isogenic population of infected cells result in two distinct expression states corresponding to latent and productive HIV-1 infection. These findings demonstrate the importance of stochastic gene expression in molecular "decision-making."


Assuntos
Biodiversidade , Genes tat , HIV-1/metabolismo , Ativação Transcricional , Simulação por Computador , Regulação Viral da Expressão Gênica , Vetores Genéticos , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Lentivirus/genética , Replicação Viral
11.
Nat Rev Genet ; 6(6): 451-64, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15883588

RESUMO

Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.


Assuntos
Regulação da Expressão Gênica , Expressão Gênica/fisiologia , Fenótipo , Animais , Bactérias/genética , Células Eucarióticas/metabolismo , Processos Estocásticos
12.
Annu Rev Biomed Eng ; 5: 179-206, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14527313

RESUMO

The rapid accumulation of genetic information and advancement of experimental techniques have opened a new frontier in biomedical engineering. With the availability of well-characterized components from natural gene networks, the stage has been set for the engineering of artificial gene regulatory networks with sophisticated computational and functional capabilities. In these efforts, the ability to construct, analyze, and interpret qualitative and quantitative models is becoming increasingly important. In this review, we consider the current state of gene network engineering from a combined experimental and modeling perspective. We discuss how networks with increased complexity are being constructed from simple modular components and how quantitative deterministic and stochastic modeling of these modules may provide the foundation for accurate in silico representations of gene regulatory network function in vivo.


Assuntos
Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Engenharia Genética/métodos , Modelos Genéticos , Animais , Humanos , Engenharia de Proteínas/métodos , Processos Estocásticos , Transcrição Gênica/genética
13.
Nature ; 422(6932): 633-7, 2003 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-12687005

RESUMO

Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.


Assuntos
Células Eucarióticas/metabolismo , Genes Fúngicos/genética , Modelos Genéticos , Saccharomyces cerevisiae/genética , Transcrição Gênica , Diferenciação Celular , Regulação Fúngica da Expressão Gênica , Fenótipo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA