Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 25(9): 3070-3090, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038783

RESUMO

Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large-scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree-ring width (TRW) and intrinsic water-use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south-western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition method and relationships with local climate, large-scale climatic indices, TRW and Scots pine's iWUE were assessed. Temporal trends in N:P ratios indicated increasing P limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine-dominated to a beech-dominated forest took place. A significant influence of large-scale patterns on tree-level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large-scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen 3 years prior to tree-ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests.


Assuntos
Fagus , Pinus sylvestris , Ecossistema , El Niño Oscilação Sul , Árvores
2.
Ecol Appl ; 24(6): 1374-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29160661

RESUMO

The effects of forest management on soil carbon (C) and nitrogen (N) dynamics vary by harvest type and species. We simulated long-term effects of bole-only harvesting of aspen (Populus tremuloides) on stand productivity and interaction of CN cycles with a multiple model approach. Five models, Biome-BGC, CENTURY, FORECAST, LANDIS-II with Century-based soil dynamics, and PnET-CN, were run for 350 yr with seven harvesting events on nutrient-poor, sandy soils representing northwestern Wisconsin, United States. Twenty CN state and flux variables were summarized from the models' outputs and statistically analyzed using ordination and variance analysis methods. The multiple models' averages suggest that bole-only harvest would not significantly affect long-term site productivity of aspen, though declines in soil organic matter and soil N were significant. Along with direct N removal by harvesting, extensive leaching after harvesting before canopy closure was another major cause of N depletion. These five models were notably different in output values of the 20 variables examined, although there were some similarities for certain variables. PnET-CN produced unique results for every variable, and CENTURY showed fewer outliers and similar temporal patterns to the mean of all models. In general, we demonstrated that when there are no site-specific data for fine-scale calibration and evaluation of a single model, the multiple model approach may be a more robust approach for long-term simulations. In addition, multimodeling may also improve the calibration and evaluation of an individual model.


Assuntos
Ciclo do Carbono , Agricultura Florestal , Florestas , Modelos Biológicos , Ciclo do Nitrogênio , Populus/fisiologia , Carbono/química , Simulação por Computador , Nitrogênio/química , Solo/química , Fatores de Tempo , Wisconsin
3.
Am J Physiol Gastrointest Liver Physiol ; 304(4): G390-400, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23238933

RESUMO

Proteinase-activated receptor-2 (PAR-2) and mast cell (MC) mediators contribute to inflammatory and functional gastrointestinal disorders. We aimed to characterize jejunal PAR-2-mediated responses and the potential MC involvement in the early and late phases of a rat model of postinfectious gut dysfunction. Jejunal tissues of control and Trichinella spiralis-infected (14 and 30 days postinfection) rats, treated or not with the MC stabilizer, ketotifen, were used. Histopathology and immunostaining were used to characterize inflammation, PAR-2 expression, and mucosal and connective tissue MCs. Epithelial barrier function (hydroelectrolytic transport and permeability) and motility were assessed in vitro in basal conditions and after PAR-2 activation. Intestinal inflammation on day 14 postinfection (early phase) was significantly resolved by day 30 (late phase) although MC counts and epithelial permeability remained increased. PAR-2-mediated ion transport (Ussing chambers, in vitro) and epithelial surface PAR-2 expression were reduced in the early phase, with a trend toward normalization during the late phase. In control conditions, PAR-2 activation (organ bath) induced biphasic motor responses (relaxation followed by excitation). At 14 days postinfection, spontaneous contractility and PAR-2-mediated relaxations were enhanced; motor responses were normalized on day 30. Postinfectious changes in PAR-2 functions were not affected by ketotifen treatment. We concluded that, in the rat model of Trichinella spiralis infection, alterations of intestinal PAR-2 function and expression depend on the inflammatory phase considered. A lack of a ketotifen effect suggests no interplay between MCs and PAR-2-mediated motility and ion transport alterations. These observations question the role of MC mediators in PAR-2-modulating postinfectious gut dysfunction.


Assuntos
Gastroenterite/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiopatologia , Mastócitos/fisiologia , Receptor PAR-2/fisiologia , Trichinella spiralis , Triquinelose/fisiopatologia , Animais , Cetotifeno/farmacologia , Masculino , Mastócitos/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
Sci Total Environ ; 888: 164118, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37187397

RESUMO

Soils store an important amount of carbon (C), mostly in the form of organic matter in different decomposing stages. Hence, understanding the factors that rule the rates at which decomposed organic matter is incorporated into the soil is paramount to better understand how C stocks will vary under changing atmospheric and land use conditions. We studied the interactions between vegetation cover, climate and soil factors using the Tea Bag Index in 16 different ecosystems (eight forests, eight grasslands) along two contrasting gradients in the Spanish province of Navarre (SW Europe). Such arrangement encompassed a range of four climate types, elevations from 80 to 1420 m.a.s.l., and precipitation (P) from 427 to 1881 mm year-1. After incubating tea bags during the spring of 2017, we identified strong interactions between vegetation cover type, soil C/N and precipitation affecting decomposition rates and stabilization factors. In both forests and grasslands, increasing precipitation increased decomposition rates (k) but also the litter stabilization factor (S). In forests, however, increasing the soil C/N ratio raised decomposition rates and the litter stabilization factor, while in grasslands higher C/N ratios caused the opposite effects. In addition, soil pH and N also affected decomposition rates positively, but for these factors no differences between ecosystem types were found. Our results demonstrate that soil C flows are altered by complex site-dependent and site-independent environmental factors, and that increased ecosystem lignification will significantly change C flows, likely increasing decomposition rates in the short term but also increasing the inhibiting factors that stabilize labile litter compounds.


Assuntos
Ecossistema , Solo , Solo/química , Pradaria , Florestas , Carbono/análise , Chá
5.
Ecology ; 104(9): e4135, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438994

RESUMO

We compiled and presented a dataset for all timber species reported in the Amazon region from all nine South American Amazonian countries. This was based on official information from every country, as well as from two substantial scientific references. We verified the standard taxonomic names from each individual source, using the Taxonomic Name Resolution Service (TNRS) and considered all Amazonian tree species with diameter at breast height (DBH) ≥10 cm. We also obtained estimates of the current population size for most species from a published approach based on data from 1900 tree inventory plots (1-ha each) distributed across the Amazon region and part from the Amazon Tree Diversity Network (ATDN). We then identified the hyperdominant timber species. In addition, we overlapped our timber species list with data for species that are used for commercial purposes, according to the International Tropical Timber Organization (ITTO), the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the International Union for Conservation of Nature (IUCN) taxa assessment and Red List categories. Finally, we also included IUCN Red List categories based on combined deforestation, and climate change scenarios for these species. Our final Amazonian timber species dataset contains 1112 unique species records, which belong to 337 genera and 72 families from the lowland Amazonian rainforest, with associated information related to population, conservation, and trade status of each species. The authors of this research expect that the information provided will be useful to strengthen the public forestry policies of the Amazon countries, inform ecological studies, as well for forest management purposes. The data are released under the Creative Commons Attribution 4.0 International license.


Assuntos
Comércio , Internacionalidade , Humanos , Árvores , Florestas , Agricultura Florestal , Conservação dos Recursos Naturais , Clima Tropical
6.
Ecol Appl ; 19(3): 682-98, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19425431

RESUMO

Needle chemical composition was measured, and nutrient resorption, nutrient-use efficiency (NUE), and other indexes were estimated for 24 months in two contrasting natural Pinus sylvestris L. forests in the western Pyrenees in Spain. For each location (Aspurz, 650 m elevation, 7% slope; Garde, 1335 m elevation, 40% slope), there were three reference plots (P0), three plots with 20% of the basal area removed (P20), and three with 30% of the basal area removed (P30). Needle P, Ca, and Mg concentrations were higher in Garde, but N concentration was higher for Aspurz, without differences for K. Nutrient-resorption efficiency of P was higher in Aspurz, of Mg higher in Garde, and there were no differences between sites in N and K. Nutrient-resorption proficiency was significantly higher in the site with lower soil nutrient availability, i.e., for P, Ca, and Mg in Aspurz, but N in Garde (no differences in K); this may be an indicator of nutrient conservation strategy. Annual nutrient productivity (A) was higher for all nutrients in Aspurz, whereas the mean residence time (MRT) was higher in Garde in all nutrients but P. NUE was significantly higher in Garde for all nutrients but P, which was more efficiently used in Aspurz. In both sites, N, P, and K concentrations were higher in the 2002 cohort, Ca in the 2000 cohort, and maximum Mg was found in the 2001 cohort. Thinning caused a reduction of Mg concentration in the 2001 cohort in Aspurz, an increase of Ca resorption proficiency in Aspurz and Mg resorption at both sites, and reduction of P, K, and Mg nutrient response efficiency (NRE) in Garde. Thinning may have caused an increase of the C:Mg ratio through facilitating the development of more biosynthesis apparatus in a more illuminated canopy, but it seemed not to affect resorption in a significant way. Changes in NRE in Garde after thinning show that forest management can affect how trees use nutrients. Our results indicate that the strategy to optimize NUE is different in each stand. In Aspurz (a Mediterranean ecosystem), pine trees carried out resorption more efficiently, while in Garde (a continental forest), trees used nutrients for longer periods of time and reduced their efficiency in using the available soil nutrients after reduced competition by thinning.


Assuntos
Pinus sylvestris/metabolismo , Cálcio/análise , Agricultura Florestal , Magnésio/análise , Nitrogênio/análise , Fósforo/análise , Pinus sylvestris/química , Pinus sylvestris/crescimento & desenvolvimento , Estações do Ano , Espanha , Fatores de Tempo , Árvores/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
7.
PLoS One ; 9(2): e89688, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586964

RESUMO

Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500-2500 trees ha⁻¹. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir--Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr⁻¹, offsetting 1.9% of China's annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products with longer life spans.


Assuntos
Sequestro de Carbono , Ecossistema , Agricultura Florestal/métodos , Carbono/análise , China , Simulação por Computador , Cunninghamia/crescimento & desenvolvimento , Florestas , Lauraceae/crescimento & desenvolvimento , Solo/química
8.
Sci Total Environ ; 437: 91-103, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22917531

RESUMO

How long would it take for forests to recover their original productivity following continuous intensive management if they are left untouched? This issue was explored using the model FORECAST, calibrated and validated for coastal Douglas-fir stands on Vancouver Island (western Canada). Three types of forest management (production of timber, pulp, and biomass) were simulated, being different in utilization level and rotation length (stem-only and 75-year rotation for timber production, whole-tree and 30-year rotation for pulp/fiber, and whole-tree and 15-year rotations for biomass production). Management was simulated for 150 years, followed by several cycles of natural growth without management ending with a stand-replacing windstorm with a return time of 200 years. Productivity-related ecological variables in previously managed stands were compared to natural forests. Stands developed after management for timber would quickly reach values similar to non-managed forests for tree and understory total biomass, stored carbon, available nitrogen and soil organic matter (SOM). However, intensive management regimes designed for fiber and biomass production would cause a decrease in SOM and nutrient availability, increasing understory biomass. As a consequence, stands recovering from intensive management would need at least two stand-replacing events (400 years) to reach a productivity status similar to non-managed stands. Stands developed after management for biomass would take much longer, up to 600 or 800 years to recover similar values of SOM and understory biomass, respectively. Current fertilization prescriptions will likely be not enough to stop a quick drop in forest productivity associated with intensive management. Intensifying forest management to achieve short-term objectives could produce a reduction of stand productivity that would influence tree growth for very long time (up to several centuries), if such management is continuously implemented at the same stand. Some of these effects could be reduced if one rotation of intensive management (for pulp or bioenergy) is followed by a rotation of management for timber, or by leaving the forest without management for an equivalent time.


Assuntos
Agricultura Florestal/métodos , Pseudotsuga/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Colúmbia Britânica , Modelos Biológicos , Solo/química
9.
Sci Total Environ ; 416: 351-61, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22225819

RESUMO

Nitrogen deposition and its ecological effects on forest ecosystems have received global attention. We used the ecosystem model FORECAST to assess the effects of nitrogen deposition on carbon sequestration in Chinese fir planted forests in SE China. This topic is important as China is intensifying its reforestation efforts to increase forest carbon sequestration for combating climate change impacts, using Chinese fir as the most important plantation species. A series of scenarios including seven N deposition levels (1, 5, 10, 20, 30, 40 and 50kg ha(-1)y(-1)), three management regime (rotation lengths of 15, 30 and 50 years) and two site qualities (nutrient poor and fertile sites) were defined for the simulations. Our results showed that N deposition increased carbon sequestration in Chinese fir forests, but the efficiency of the increasing effect is reduced as N deposition levels increase. When N deposition levels exceeded 20-30kg ha(-1)y(-1), the incremental effects of N deposition on forest C pools were marginal. This suggests that N deposition levels above 20-30kg ha(-1)y(-1) could lead to N saturation in Chinese fir forest soils. Any additional amounts of N input from deposition would likely be leached out. Total above-ground C was more sensitive to N deposition than to rotation length and site quality. It was also estimated that the contributions of N deposition to C sequestration in all Chinese fir forests in South-East China are 7.4×10(6)MgCy(-1) under the current N deposition levels (5 to 10kg ha(-1)y(-1)) and could reach up to 16×10(6)MgCy(-1) if N deposition continues increasing and reaches levels of 7.5 to 15kg N ha(-1)y(-1).


Assuntos
Sequestro de Carbono , Ecossistema , Ciclo do Nitrogênio , Árvores , China , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA