Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AMB Express ; 12(1): 146, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417032

RESUMO

Healthcare-associated infections (HAIs) represent a global challenge and an even more staggering concern when related to microorganisms capable of resisting and surviving for long periods in the environment, such as Acinetobacter spp. Strategies that allow a reduction of pathogens from hospital environments represent an additional barrier in infection control protocols, minimizing transmission to hospitalized patients. Considering the antimicrobial properties of copper, here, the bacterial load and the presence of Acinetobacter spp. were monitored on high handling surfaces covered by 99.9% copper films on intensive and non-intensive care unit bedrooms in a tertiary care hospital. Firstly, copper-coated films were able to inhibit the adhesion and biofilm formation of A. baumannii strains in in vitro assays. On the other hand, Acinetobacter spp. were isolated from both copper-coated and uncoated surfaces in the hospital, although the majority was detected on surfaces without copper. All carbapenem-resistant A. baumannii isolates identified harbored the blaoxa-23 gene, while the A. nosocomialis isolates were susceptible to most antimicrobials tested. All isolates were susceptible to polymyxin B. Regarding the total aerobic bacteria, surfaces with copper-coated films presented lower total loads than those detected for controls. Copper coating films may be a workable strategy to mitigate HAIs, given their potential in reducing bacterial loads in nosocomial environments, including threatening pathogens like A. baumannii.

2.
Genes Nutr ; 9(1): 377, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24338343

RESUMO

Memory deficits are common during aging, but little is known about the impact of environmental and genetic variables on memory. The genes SLC30A3 and SEP15 are, respectively, responsible for transporting zinc and selenium, micronutrients that are neuroprotective agents. The aim of this study was to investigate the effect of nutrigenetic interactions on the memory scores of volunteers more than 50 years old. For this cross-sectional study, 240 individuals were enrolled. Micronutrient dosage was determined using atomic absorption spectrophotometry. The SNPs rs5859, rs5854, and rs561104 in SEP15 and rs73924411 and rs11126936 in SLC30A3 were determined by real-time PCR. The evaluations of verbal and visual memory were performed using the Weschler Memory Scale-revised and the Rey's verbal learning test. A gene versus nutrient interaction was observed for SLC30A3 rs73924411 and zinc concentration. Carriers of the T allele had higher scores for short-term and long-term verbal memories than CC homozygotes only when zinc serum concentration was below the recommended level (p value for the interaction for short-term verbal memory = 0.011, p value for the interaction for long-term verbal memory = 0.039). For SEP15, C carriers of the rs5845 SNP allele had higher verbal learning memory scores than TT homozygotes (0.13 ± 1.13 vs. -1.10 ± 1.20, p = 0.034). Our results suggest the influence of genetic polymorphisms on memory score and identify gene versus nutrient interactions between zinc serum concentration and memory score.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA