Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426486

RESUMO

Macaques trained to perform bipedally used running gaits across a wide range of speeds. At higher speeds they preferred unilateral skipping (galloping). The same asymmetric stepping pattern was used while hurdling across two low obstacles placed at the distance of a stride within our experimental track. In bipedal macaques during skipping, we expected a differential use of the trailing and leading legs. The present study investigated global properties of the effective and virtual leg, the location of the virtual pivot point (VPP), and the energetics of the center of mass (CoM), with the aim of clarifying the differential leg operation during skipping in bipedal macaques. When skipping, macaques displayed minor double support and aerial phases during one stride. Asymmetric leg use was indicated by differences in leg kinematics. Axial damping and tangential leg work did not influence the indifferent peak ground reaction forces and impulses, but resulted in a lift of the CoM during contact of the leading leg. The aerial phase was largely due to the use of the double support. Hurdling amplified the differential leg operation. Here, higher ground reaction forces combined with increased double support provided the vertical impulse to overcome the hurdles. Following CoM dynamics during a stride, skipping and hurdling represented bouncing gaits. The elevation of the VPP of bipedal macaques resembled that of human walking and running in the trailing and leading phases, respectively. Because of anatomical restrictions, macaque unilateral skipping differs from that of humans, and may represent an intermediate gait between grounded and aerial running.


Assuntos
Macaca , Corrida , Animais , Humanos , Caminhada , Marcha , Perna (Membro) , Fenômenos Biomecânicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33459819

RESUMO

The measurement of cuticular strain during locomotion using foil strain gauges provides information both on the loads of the exoskeleton bears and the adaptive value of the specific location of natural strain detectors (slit sense organs). Here, we critically review available literature. In tethered animals, by applying loads to the metatarsus tip, strain and mechanical sensitivity (S = strain/load) induced at various sites in the tibia were determined. The loci of the lyriform organs close to the tibia-metatarsus joint did not stand out by high strain. The strains induced at various sites during free locomotion can be interpreted based on S and, beyond the joint region, on beam theory. Spiders avoided laterad loading of the tibia-metatarsus joint during slow locomotion. Balancing body weight, joint flexors caused compressive strain at the posterior and dorsal tibia. While climbing upside down strain measurements indicate strong flexor activity. In future studies, a precise calculation and quantitative determination of strain at the sites of the lyriform organs will profit from more detailed data on the overall strain distribution, morphology, and material properties. The values and caveats of the strain gauge technology, the only one applicable to freely moving spiders, are discussed.


Assuntos
Exoesqueleto/fisiologia , Fenômenos Biomecânicos/fisiologia , Extremidades/fisiologia , Locomoção/fisiologia , Aranhas/fisiologia , Estresse Mecânico , Animais , Virtudes
3.
J Exp Biol ; 224(Pt 1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33257431

RESUMO

The role of trunk orientation during uneven running is not well understood. This study compared the running mechanics during the approach step to and the step down for a 10 cm expected drop, positioned halfway through a 15 m runway, with that of the level step in 12 participants at a speed of 3.5 m s-1 while maintaining self-selected (17.7±4.2 deg; mean±s.d.), posterior (1.8±7.4 deg) and anterior (26.6±5.6 deg) trunk leans from the vertical. Our findings reveal that the global (i.e. the spring-mass model dynamics and centre-of-mass height) and local (i.e. knee and ankle kinematics and kinetics) biomechanical adjustments during uneven running are specific to the step nature and trunk posture. Unlike the anterior-leaning posture, running with a posterior trunk lean is characterized by increases in leg angle, leg compression, knee flexion angle and moment, resulting in a stiffer knee and a more compliant spring-leg compared with the self-selected condition. In the approach step versus the level step, reductions in leg length and stiffness through the ankle stiffness yield lower leg force and centre-of-mass position. Contrariwise, significant increases in leg length, angle and force, and ankle moment, reflect in a higher centre-of-mass position during the step down. Plus, ankle stiffness significantly decreases, owing to a substantially increased leg compression. Overall, the step down appears to be dominated by centre-of-mass height changes, regardless of having a trunk lean. Observed adjustments during uneven running can be attributed to anticipation of changes to running posture and height. These findings highlight the role of trunk posture in human perturbed locomotion relevant for the design and development of exoskeleton or humanoid bipedal robots.


Assuntos
Perna (Membro) , Tronco , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Postura
4.
J Exp Biol ; 224(Pt 2)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33288531

RESUMO

Across a wide range of Froude speeds, non-human primates such as macaques prefer to use grounded and aerial running when locomoting bipedally. Both gaits are characterized by bouncing kinetics of the center of mass. In contrast, a discontinuous change from pendular to bouncing kinetics occurs in human locomotion. To clarify the mechanism underlying these differences in bipedal gait mechanics between humans and non-human primates, we investigated the influence of gait on joint kinematics in the legs and trunk of three macaques crossing an experimental track. The coordination of movement was compared with observations available for primates. Compared with human running, macaque leg retraction cannot merely be produced by hip extension, but needs to be supported by substantial knee flexion. As a result, despite quasi-elastic whole-leg operation, the macaque's knee showed only minor rebound behavior. Ankle extension resembled that observed during human running. Unlike human running and independent of gait, torsion of the trunk represents a rather conservative feature in primates, and pelvic axial rotation added to step length. Pelvic lateral lean during grounded running by macaques (compliant leg) and human walking (stiff leg) depends on gait dynamics at the same Froude speed. The different coordination between the thorax and pelvis in the sagittal plane as compared with human runners indicates different bending modes of the spine. Morphological adaptations in non-human primates to quadrupedal locomotion may prevent human-like operation of the leg and limit exploitation of quasi-elastic leg operation despite running dynamics.


Assuntos
Perna (Membro) , Macaca , Animais , Fenômenos Biomecânicos , Marcha , Caminhada
5.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342358

RESUMO

Animals are known to exhibit different walking behaviors in hilly habitats. For instance, cats, rats, squirrels, tree frogs, desert iguana, stick insects and desert ants were observed to lower their body height when traversing slopes, whereas mound-dwelling iguanas and wood ants tend to maintain constant walking kinematics regardless of the slope. This paper aims to understand and classify these distinct behaviors into two different strategies against toppling for climbing animals by looking into two factors: (i) the torque of the center of gravity (CoG) with respect to the critical tipping axis, and (ii) the torque of the legs, which has the potential to counterbalance the CoG torque. Our comparative locomotion analysis on level locomotion and inclined locomotion exhibited that primarily only one of the proposed two strategies was chosen for each of our sample species, despite the fact that a combined strategy could have reduced the animal's risk of toppling over even more. We found that Cataglyphis desert ants (species Cataglyphis fortis) maintained their upright posture primarily through the adjustment of their CoG torque (geometric strategy), and Formica wood ants (species Formica rufa), controlled their posture primarily by exerting leg torques (adhesive strategy). We further provide hints that the geometric strategy employed by Cataglyphis could increase the risk of slipping on slopes as the leg-impulse substrate angle of Cataglyphis hindlegs was lower than that of Formica hindlegs. In contrast, the adhesion strategy employed by Formica front legs not only decreased the risk of toppling but also explained the steeper leg-impulse substrate angle of Formica hindlegs which should relate to more bending of the tarsal structures and therefore to more microscopic contact points, potentially reducing the risk of hindleg slipping.


Assuntos
Adesivos , Formigas , Animais , Fenômenos Biomecânicos , Gatos , Locomoção , Ratos , Caminhada
6.
J Theor Biol ; 494: 110227, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142807

RESUMO

Animals typically switch from grounded (no flight phases) to aerial running at dimensionless speeds u^ < 1. But some birds use grounded running far above u^ = 1, which puzzles biologists because the inverted pendulum becomes airborne at this speed. Here, we combine computer experiments using the spring-mass model with locomotion data from small birds, macaques and humans to understand the relationship between leg function (stiffness, angle of attack), locomotion speed and gait. With our model, we found three-humped ground reaction force profiles for slow grounded running speeds. The minimal single-humped grounded running speed is u^ = 0.4. This speed value roughly coincides with the transition speed from vaulting to bouncing mechanics in bipeds. Maximal grounded running speed in the model is not limited. In experiments, animals changed from grounded to aerial running at dimensionless contact time around 1. Considering these real-world contact times reduces the solution space drastically, but experimental data fit well. The model still predicts maximal grounded running speed  u^ > 1 for low stiffness values used by birds but decreases below u^ = 1 for increasing stiffness. For stiffer legs used in human walking and running, periodic grounded running vanishes. At speeds at which birds and macaques change to aerial running, we found periodic aerial running to intersect grounded running. This could explain why animals can alternate between grounded and aerial running at the same speed and identical leg parameters. Compliant legs enable different gaits and speeds with similar leg parameters, stiff legs require parameter adaptations.


Assuntos
Aves , Modelos Biológicos , Corrida , Animais , Fenômenos Biomecânicos , Aves/fisiologia , Voo Animal , Marcha , Humanos , Locomoção , Macaca/fisiologia , Caminhada
8.
J Hum Evol ; 125: 2-14, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502894

RESUMO

It was previously believed that, among primates, only humans run bipedally. However, there is now growing evidence that at least some non-human primates can not only run bipedally but can also generate a running gait with an aerial phase. Japanese macaques trained for bipedal performances have been known to exhibit remarkable bipedal locomotion capabilities, but no aerial-phase running has previously been reported. In the present study, we investigated whether Japanese macaques could run with an aerial phase by collecting bipedal gait sequences from three macaques on a level surface at self-selected speeds (n = 188). During our experiments, body kinematics and ground reaction forces were recorded by a motion-capture system and two force plates installed within a wooden walkway. Our results demonstrated that macaques were able to utilize a variety of bipedal gaits including grounded running, skipping, and even running with an aerial phase. The self-selected bipedal locomotion speed of the macaques was fast, with Froude speed ranging from 0.4 to 1.3. However, based on congruity, no single trial that could be categorized as a pendulum-like walking gait was observed. The parameters describing the temporal, kinematic, and dynamic characteristics of macaque bipedal running gaits follow the patterns previously documented for other non-human primates and terrestrial birds that use running gaits, but are different from those of humans and from birds' walking gaits. The present study confirmed that when a Japanese macaque engages in bipedal locomotion, even without an aerial phase, it generally utilizes a spring-like running mechanism because the animals have a limited ability to stiffen their legs. That limitation is due to anatomical restrictions determined by the morphology and structure of the macaque musculoskeletal system. The general adoption of grounded running in macaques and other non-human primates, along with its absence in human bipedal locomotion, suggests that abandonment of compliant gait was a critical transition in the evolution of human obligatory bipedalism.


Assuntos
Marcha , Macaca/fisiologia , Corrida , Animais , Fenômenos Biomecânicos , Masculino
9.
J Exp Biol ; 221(Pt 24)2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530767

RESUMO

Macaques trained to perform bipedally use grounded running, skipping and aerial running, but avoid walking. The preference for grounded running across a wide range of speeds is substantially different from the locomotion habits observed in humans, which may be the result of differences in leg compliance. In the present study, based on kinematic and dynamic observations of three individuals crossing an experimental track, we investigated global leg properties such as leg stiffness and viscous damping during grounded and aerial running. We found that, in macaques, similar to human and bird bipedal locomotion, the vector of the ground reaction force is directed from the center of pressure (COP) to a virtual pivot point above the center of mass (COM). The visco-elastic leg properties differ for the virtual leg (COM-COP) and the effective leg (hip-COP) because of the position of the anatomical hip with respect to the COM. The effective leg shows damping in the axial direction and positive work in the tangential component. Damping does not prevent the exploration of oscillatory modes. Grounded running is preferred to walking because of leg compliance. The transition from grounded to aerial running is not accompanied by a discontinuous change. With respect to dynamic properties, macaques seem to be well placed between bipedal specialists (humans and birds). We speculate that the losses induced in the effective leg by hip placement and slightly pronograde posture may not pay off by facilitating stabilization, making bipedal locomotion expensive and insecure for macaques.


Assuntos
Perna (Membro)/fisiologia , Macaca/fisiologia , Postura , Corrida , Caminhada , Animais , Fenômenos Biomecânicos , Masculino
10.
J Exp Biol ; 220(Pt 9): 1618-1625, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183867

RESUMO

The employment of an alternating tripod gait to traverse uneven terrains is a common characteristic shared among many Hexapoda. Because this could be one specific cause for their ecological success, we examined the alternating tripod gait of the desert ant Cataglyphis fortis together with their ground reaction forces and weight-specific leg impulses for level locomotion and on moderate (±30 deg) and steep (±60 deg) slopes in order to understand mechanical functions of individual legs during inclined locomotion. There were three main findings from the experimental data. (1) The hind legs acted as the main brake (negative weight-specific impulse in the direction of progression) on both the moderate and steep downslopes while the front legs became the main motor (positive weight-specific impulse in the direction of progression) on the steep upslope. In both cases, the primary motor or brake was found to be above the centre of mass. (2) Normalised double support durations were prolonged on steep slopes, which could enhance the effect of lateral shear loading between left and right legs with the presence of direction-dependent attachment structures. (3) The notable directional change in the lateral ground reaction forces between the moderate and steep slopes implied the utilisation of different coordination programs in the extensor-flexor system.


Assuntos
Formigas/fisiologia , Animais , Fenômenos Biomecânicos , Extremidades/fisiologia , Marcha , Locomoção , Orientação
11.
J Exp Biol ; 220(Pt 3): 478-486, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888201

RESUMO

Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs.


Assuntos
Perna (Membro)/fisiologia , Postura , Caminhada , Adulto , Animais , Fenômenos Biomecânicos , Aves/anatomia & histologia , Aves/fisiologia , Eletromiografia , Feminino , Marcha , Humanos , Articulações/anatomia & histologia , Articulações/fisiologia , Perna (Membro)/anatomia & histologia , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/fisiologia , Masculino , Modelos Biológicos , Amplitude de Movimento Articular , Adulto Jovem
12.
Proc Biol Sci ; 283(1826): 20153030, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26936248

RESUMO

Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.


Assuntos
Contração Muscular , Miosinas/metabolismo , Sarcômeros/fisiologia , Animais , Humanos , Modelos Biológicos
13.
J Exp Biol ; 219(Pt 15): 2311-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27489217

RESUMO

The purpose of the study was to examine the relationship between muscle force generated during isometric contractions (i.e. at a constant muscle-tendon unit length) and the intermuscular (between adjacent muscles) pressure in synergistic muscles. Therefore, the pressure at the contact area of the gastrocnemius and plantaris muscle was measured synchronously to the force of the whole calf musculature in the rabbit species Oryctolagus cuniculus Similar results were obtained when using a conductive pressure sensor, or a fibre-optic pressure transducer connected to a water-filled balloon. Both methods revealed a strong linear relationship between force and pressure in the ascending limb of the force-length relationship. The shape of the measured force-time and pressure-time traces was almost identical for each contraction (r=0.97). Intermuscular pressure ranged between 100 and 700 mbar (70,000 Pa) for forces up to 287 N. These pressures are similar to previous (intramuscular) recordings within skeletal muscles of different vertebrate species. Furthermore, our results suggest that the rise in intermuscular pressure during contraction may reduce the force production in muscle packages (compartments).


Assuntos
Músculos/fisiologia , Pressão , Animais , Fenômenos Biomecânicos , Contração Isométrica/fisiologia , Modelos Lineares , Modelos Biológicos , Coelhos , Fatores de Tempo , Transdutores
14.
J Exp Biol ; 219(Pt 4): 485-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643087

RESUMO

Small birds move with pronograde trunk orientation and crouched legs. Although the pronograde trunk has been suggested to be beneficial for grounded running, the cause(s) of the specific leg kinematics are unknown. Here we show that three charadriiform bird species (northern lapwing, oystercatcher, and avocet; great examples of closely related species that differ remarkably in their hind limb design) move their leg segments during stance in a way that minimizes the cost of locomotion. We imposed measured trunk motions and ground reaction forces on a kinematic model of the birds. The model was used to search for leg configurations that minimize leg work that accounts for two factors: elastic recoil in the intertarsal joint, and cheaper negative muscle work relative to positive muscle work. A physiological level of elasticity (∼ 0.6) yielded segment motions that match the experimental data best, with a root mean square of angular deviations of ∼ 2.1 deg. This finding suggests that the exploitation of elastic recoil shapes the crouched leg kinematics of small birds under the constraint of pronograde trunk motion. Considering that an upright trunk and more extended legs likely decrease the cost of locomotion, our results imply that the cost of locomotion is a secondary movement criterion for small birds. Scaling arguments suggest that our approach may be utilized to provide new insights into the motion of extinct species such as dinosaurs.


Assuntos
Charadriiformes/fisiologia , Locomoção/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Marcha , Membro Posterior , Masculino , Modelos Teóricos , Postura , Tronco
15.
Int J Legal Med ; 130(3): 827-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075915

RESUMO

Forensic case work as well as literature shows that severe head injuries, e.g., with basilar fractures and cerebral hemorrhages due to stomps can be seen; however, there is no data basis concerning contact forces and potential influencing factors. The objective of this work was to generate a data basis of contact forces in stomping by performing experimental measurements and subsequent statistical analyses. Fifty-five volunteers participated in the present study. Each participant performed several stomps onto force plates with sturdy/soft footwear as well as with/without an elastic layer imitating the scalp. Ground reaction forces induced by jumps were also measured for sturdy and soft footwear. The results show statistically significant dependencies between maximum ground reaction forces and body weight and body height. A statistically significant influence of footwear on stomping force could only be found in tests with an elastic layer and in the jumping setup. Mean maximum stomping forces for the female volunteers were between 4694 and 5970 N; male volunteers were able to produce mean peak stomping forces between 8494 and 9016 N. Jumping forces were approximately twice the stomping forces for both male and female test persons. Regardless of footwear and gender, it can be claimed that a forceful stomp or jump to someone's head supported on the ground can cause facial and skull fractures. Thus, forceful stomps or jumps to someone's head can cause potential fatal injuries independent of footwear, gender, or fitness level.


Assuntos
Fenômenos Biomecânicos/fisiologia , Traumatismos Cranianos Fechados/fisiopatologia , Adulto , Estatura/fisiologia , Peso Corporal/fisiologia , Feminino , Ciências Forenses , Humanos , Masculino , Pessoa de Meia-Idade , Sapatos , Adulto Jovem
16.
J Exp Biol ; 218(Pt 3): 451-7, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524978

RESUMO

While running on uneven ground, humans are able to negotiate visible but also camouflaged changes in ground level. Previous studies have shown that the leg kinematics before touch down change with ground level. The present study experimentally investigated the contributions of visual perception (visual feedback), proprioceptive feedback and feed-forward patterns to the muscle activity responsible for these adaptations. The activity of three bilateral lower limb muscles (m. gastrocnemius medialis, m. tibialis anterior and m. vastus medialis) of nine healthy subjects was recorded during running across visible (drop of 0, -5 and -10 cm) and camouflaged changes in ground level (drop of 0 and -10 cm). The results reveal that at touchdown with longer flight time, m. tibialis anterior activation decreases and m. vastus medialis activation increases purely by feed-forward driven (flight time-dependent) muscle activation patterns, while m. gastrocnemius medialis activation increase is additionally influenced by visual feedback. Thus, feed-forward driven muscle activation patterns are sufficient to explain the experimentally observed adjustments of the leg at touchdown.


Assuntos
Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Percepção Visual , Adaptação Fisiológica , Adulto , Fenômenos Biomecânicos , Retroalimentação Sensorial , Humanos , Masculino
17.
J Theor Biol ; 382: 187-97, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26142948

RESUMO

In bipedal runners and hoppers the hip is not located at the center of mass in the sagittal projection. This displacement influences operation and energetics of the leg attached to the hip. To investigate this influence in a first step a simple conservative bouncing template is developed in which a heavy trunk is suspended to a massless spring at a pivot point above the center of mass. This model describes the orientation of the ground reaction forces observed in experiments on running birds. In a second step it is assumed that an effective telescope leg with its hip fixed to the trunk remote from the COM generates the same ground reaction forces as those predicted by the template. For this effective leg the influence of hip placement on leg operation and energetics is investigated. Placing the hip directly below, at, or above the pivot point results in high axial energy storage. Posterior placement increases axial losses and hip work whereas anterior placement would require axial work and absorption at the hip. Shifting the hip far posteriorly as observed in some birds can lead to the production of pure extension torques throughout the stance phase. It is proposed that the relative placement of the hip with respect to the center of mass is an important measure to modify effective leg operation with possible implications for balancing the trunk and the control of legged motion systems.


Assuntos
Aves/fisiologia , Quadril/fisiologia , Animais , Simulação por Computador , Modelos Biológicos
18.
Proc Biol Sci ; 281(1797)2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25377449

RESUMO

In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping.


Assuntos
Extremidades/fisiologia , Locomoção/fisiologia , Postura , Codorniz/fisiologia , Animais , Simulação por Computador , Codorniz/anatomia & histologia
19.
NMR Biomed ; 27(2): 146-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24151092

RESUMO

In the past, spin-echo (SE) echo planar imaging(EPI)-based diffusion tensor imaging (DTI) has been widely used to study the fiber structure of skeletal muscles in vivo. However, this sequence has several shortcomings when measuring restricted diffusion in small animals, such as its sensitivity to susceptibility-related distortions and a relatively short applicable diffusion time. To address these limitations, in the current work, a stimulated echo acquisition mode (STEAM) MRI technique, in combination with fast low-angle shot (FLASH) readout (turbo-STEAM MRI), was implemented and adjusted for DTI in skeletal muscles. Signal preparation using stimulated echoes enables longer effective diffusion times, and thus the detection of restricted diffusion within muscular tissue with intracellular distances up to 100 µm. Furthermore, it has a reduced penalty for fast T2 muscle signal decay, but at the expense of 50% signal loss compared with a SE preparation. Turbo-STEAM MRI facilitates high-resolution DTI of skeletal muscle without introducing susceptibility-related distortions. To demonstrate its applicability, we carried out rabbit in vivo measurements on a human whole-body 3 T scanner. DTI parameters of the shank muscles were extracted, including the apparent diffusion coefficient, fractional anisotropy, eigenvalues and eigenvectors. Eigenvectors were used to calculate maps of structural parameters, such as the planar index and the polar coordinates θ and ϕ of the largest eigenvector. These parameters were compared between three muscles. θ and ϕ showed clear differences between the three muscles, reflecting different pennation angles of the underlying fiber structures. Fiber tractography was performed to visualize and analyze the architecture of skeletal pennate muscles. Optimization of tracking parameters and utilization of T2 -weighted images for improved muscle boundary detection enabled the determination of additional parameters, such as the mean fiber length. The presented results support the applicability of turbo-STEAM MRI as a promising method for quantitative DTI analysis and fiber tractography in skeletal muscles.


Assuntos
Algoritmos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Musculares Esqueléticas/citologia , Processamento de Sinais Assistido por Computador , Imagem Corporal Total/métodos , Animais , Coelhos
20.
J Exp Biol ; 217(Pt 5): 704-10, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24265430

RESUMO

Measuring the ground reaction forces of a single leg is indispensable to understanding the dynamics of legged locomotion. Because of the technical state of the art, investigations are limited to animals with a body mass above 1 g. Here we present the design, fabrication, calibration and performance of a novel ultra-miniature force platform at the micronewton level. The sensor was built using the stereolithography technology and is equipped with semiconductor strain gauges. We found a highly linear signal response in the calibrated force range to ±1300 µN. Individual tests revealed that our force plate still shows a linear response at forces as great as 4 mN, confirming a large measuring range and particular robustness. The sensitivity was above 50 V N(-1) in all directions, which makes it possible to resolve forces of 10 µN. We demonstrated the suitability of the device on the basis of a typical ground reaction force measurement of an ant, Formica polyctena.


Assuntos
Formigas/fisiologia , Fisiologia/métodos , Animais , Fenômenos Biomecânicos , Calibragem , Locomoção , Fisiologia/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA