RESUMO
Mutations in the GJB2 gene are known to be a major cause of autosomal recessive deafness 1A (OMIM 220290). The most common pathogenic variants of the GJB2 gene have a high ethno-geographic specificity in their distribution, being attributed to a founder effect related to the Neolithic migration routes of Homo sapiens. The c.-23 + 1G > A splice site variant is frequently found among deaf patients of both Caucasian and Asian origins. It is currently unknown whether the spread of this mutation across Eurasia is a result of the founder effect or if it could have multiple local centers of origin. To determine the origin of c.-23 + 1G > A, we reconstructed haplotypes by genotyping SNPs on an Illumina OmniExpress 730 K platform of 23 deaf individuals homozygous for this variant from different populations of Eurasia. The analyses revealed the presence of common regions of homozygosity in different individual genomes in the sample. These data support the hypothesis of the common founder effect in the distribution of the c.-23 + 1G > A variant of the GJB2 gene. Based on the published data on the c.-23 + 1G > A prevalence among 16,177 deaf people and the calculation of the TMRCA of the modified f2-haplotypes carrying this variant, we reconstructed the potential migration routes of the carriers of this mutation around the world. This analysis indicates that the c.-23 + 1G > A variant in the GJB2 gene may have originated approximately 6000 years ago in the territory of the Caucasus or the Middle East then spread throughout Europe, South and Central Asia and other regions of the world.
Assuntos
Surdez , Efeito Fundador , Conexina 26/genética , Conexinas/genética , Surdez/epidemiologia , Surdez/genética , Perda Auditiva Neurossensorial , Humanos , MutaçãoRESUMO
Hearing loss is one of the most genetically heterogeneous disorders known. Over 120 genes are reportedly associated with non-syndromic hearing loss (NSHL). To date, in Russia, there have been relatively few studies that apply massive parallel sequencing (MPS) methods to elucidate the genetic factors underlying non-GJB2-related hearing loss cases. The current study is intended to provide an understanding of the mutation spectrum in non-GJB2-related hearing loss in a cohort of Russian sensorineural NSHL patients and establish the best diagnostic algorithm. Genetic testing using an MPS panel, which included 33 NSHL and syndromic hearing loss (SHL) genes that might be misdiagnosed as NSHL genes, was completed on 226 sequentially accrued and unrelated patients. As a result, the molecular basis of deafness was found in 21% of the non-GJB2 NSHL cases. The total contribution pathogenic, and likely pathogenic, variants in the genes studied among all hereditary NSHL Russian patients was 12%. STRC pathogenic and likely pathogenic, variants accounted for 30% of diagnoses in GJB2-negative patients, providing the most common diagnosis. The majority of causative mutations in STRC involved large copy number variants (CNVs) (80%). Among the point mutations, the most common were c.11864G>A (p.Trp3955*) in the USH2A gene, c.2171_2174delTTTG (p.Val724Glyfs*6) in the STRC gene, and c.107A>C (p.His36Pro) and c.1001G>T (p.Gly334Val) in the SLC26A4 gene. Pathogenic variants in genes involved in SHL accounted for almost half of the cases with an established molecular genetic diagnosis, which were 10% of the total cohort of patients with non-GJB2-related hearing loss.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Conexinas/genética , Conexina 26/genética , Surdez/genética , Perda Auditiva/genética , Mutação , Perda Auditiva Neurossensorial/genética , Peptídeos e Proteínas de Sinalização Intercelular/genéticaRESUMO
Although mutations in the GJB2 gene sequence make up the majority of variants causing autosomal-recessive non-syndromic hearing loss, few large deletions have been shown to contribute to DFNB1 deafness. Currently, genetic testing for DFNB1 hearing loss includes GJB2 sequencing and DFNB1 deletion analysis for two common large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854). Here, we report frequency in Russia, clinical significance and evolutionary origins of a 101 kb deletion, del(GJB2-D13S175), recently identified by us. In multiethnic cohort of 1104 unrelated hearing loss patients with biallelic mutations at the DFNB1 locus, the del(GJB2-D13S175) allele frequency of up to 0.5% (11/2208) was determined and this allele was shown to be predominantly associated with profound sensorineural hearing loss. Additionally, eight previously unpublished GJB2 mutations were described in this study. All patients carrying del(GJB2-D13S175) were of the Ingush ancestry. Among normal hearing individuals, del(GJB2-D13S175) was observed in Russian Republic of Ingushetia with a carrier rate of ~1% (2/241). Analysis of haplotypes associated with the deletion revealed a common founder in the Ingushes, with age of the deletion being ~3000 years old. Since del(GJB2-D13S175) was missed by standard methods of GJB2 analysis, del(GJB2-D13S175) detection has been added to our routine testing strategy for DFNB1 hearing loss.
Assuntos
Conexinas/genética , Efeito Fundador , Perda Auditiva/genética , Mutação , Deleção de Sequência , Criança , Pré-Escolar , Estudos de Coortes , Conexina 26 , Feminino , Frequência do Gene , Testes Genéticos , Genótipo , Perda Auditiva/epidemiologia , Humanos , Masculino , Federação Russa/epidemiologiaRESUMO
Congenital and early onset bilateral sensorineural hearing loss (SNHL) is mainly caused by mutations in numerous genes. The introduction of universal newborn hearing screening (UNHS) has increased the number of infants with mild, moderate, and moderate-to-severe sensorineural hearing loss (SNHL) detected in the first year of life. We aimed to evaluate the audiological features in patients with mild, moderate, and moderate-to-severe SNHL according to genotype. Audiological and genetic data were analyzed for 251 patients and their relatives with congenital bilateral mild, moderate, and moderate-to-severe SNHL. Hearing loss severity, audiogram profile, interaural symmetry, and dynamics of hearing thresholds were analyzed. In this case, 165 patients had GJB2 gene mutations, 30 patients were identified with STRC mutations, and 16 patients had pathogenic or likely pathogenic USH2A mutations. The presence of at least one GJB2 non-truncating variant in genotype led to less severe hearing impairment. The flat and gently sloping audiogram profiles were mostly revealed in all groups. The follow-up revealed the stability of hearing thresholds. GJB2, STRC, and USH2A pathogenic variants were detected in most patients in our cohort and were congenital in most cases.
RESUMO
Phenylketonuria is an inherited disease caused by mutations in the phenylalanine hydroxylase gene PAH. Different PAH pathogenic variants occur in different ethnic groups with various frequencies and the incidence of the disease itself varies from country to country. In the Caucasus region of Russia, some ethnoses are geographically and culturally isolated from each other. The tradition of monoethnic marriages may cause decreased genetic variability in those populations. In the Karachay-Cherkess Republic (Russia), the highest incidence of phenylketonuria in the world has been detected (1:850 newborns) in the region and 1:332 among the titular nation Karachays. Here, we showed that this phenomenon is due to the widespread prevalence of the p.Arg261* variant. Its allele frequency among Karachay patients with PKU was 68.4% and the carrier frequency in Karachays was 1:16 healthy individuals. PAH haplotype analysis showed a unique common origin. The founder haplotype and mutation "age" were estimated by analyzing the linkage disequilibrium between p.Arg261* and extragenic short tandem repeat loci. The p.Arg261* variant occurred in the Karachays population 10.2 ± 2.7 generations ago (275 ± 73 years) and its spread occurred in parallel with the growth of the population.
Assuntos
Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Mutação Puntual , Frequência do Gene , Haplótipos , Humanos , Recém-Nascido , Desequilíbrio de Ligação , Linhagem , Fenilcetonúrias/epidemiologia , Polimorfismo Genético , Federação Russa/epidemiologiaRESUMO
The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.
Assuntos
Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/genética , População Branca/genética , Ásia/epidemiologia , Mineração de Dados , Bases de Dados Genéticas , Europa (Continente)/epidemiologia , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Neoplasias/enzimologia , Neoplasias/etnologia , Regiões Promotoras Genéticas , Fatores de Proteção , Medição de Risco , Fatores de RiscoRESUMO
The rare malignant disorder autosomal recessive osteopetrosis (OPTB) is one of the most prevalent autosomal recessive diseases in the Chuvash Republic of Russia. The purpose of this study was to determine the underlying molecular cause of osteopetrosis in Chuvashiya and to reveal the factors causing the unusual high frequency of the disease in this region. Having assumed a founder effect, we performed linkage disequilibrium (LD) mapping of the OPTB locus at the TCIRG1 region and found a unique splice site mutation c.807+5G>A in all Chuvashian OPTB patients studied. We then analyzed the mutational change in mRNA and detected an intron insertion within the mutant transcript, resulting in a frameshift and premature stop-codon formation (p.Leu271AspfsX231). A decreased expression of the mutant transcript was also detected, which may have been the result of nonsense-mediated decay. Real-time qPCR and MLPA melting curve analysis-based systems were designed and used for c.807+5G>A mutation screening. In addition to analyzing the gene frequency in Chuvashiya, we also estimated three other populations in the Volga-Ural region (Mari, Udmurt and Bashkir). We found a 1.68% prevalence in Chuvashiya (calculated disease frequency, 1/3500 newborns) and a 0.84% in the Mari population (1/14 000 newborns). The haplotype analysis revealed that all OPTB cases in Chuvashians and Marians originated from a single mutational event and the age of the mutation in Chuvashians was estimated to be approximately 890 years.