RESUMO
Cationic and amphiphilic peptides can be used as homing devices to accumulate conjugated antibiotics to bacteria-enriched sites and promote efficient microbial killing. However, just as important as tackling bacterial infections, is the modulation of the immune response in this complex microenvironment. In the present report, we designed a peptide chimaera called Chim2, formed by a membrane-active module, an enzyme hydrolysis site and a formyl peptide receptor 2 (FPR2) agonist. This molecule was designed to adsorb onto bacterial membranes, promote their lysis, and upon hydrolysis by local enzymes, release the FPR2 agonist sequence for activation and recruitment of immune cells. We synthesized the isolated peptide modules of Chim2 and characterized their biological activities independently and as a single polypeptide chain. We conducted antimicrobial assays, along with other tests aiming at the analyses of the cellular and immunological responses. In addition, assays using vesicles as models of eukaryotic and prokaryotic membranes were conducted and solution structures of Chim2 were generated by 1H NMR. Chim2 is antimicrobial, adsorbs preferentially to negatively charged vesicles while adopting an α-helix structure and exposes its disorganized tail to the solvent, which facilitates hydrolysis by tryptase-like enzymes, allowing the release of the FPR2 agonist fragment. This fragment was shown to induce accumulation of the cellular activation marker, lipid bodies, in mouse macrophages and the release of immunomodulatory interleukins. In conclusion, these data demonstrate that peptides with antimicrobial and immunomodulatory activities can be considered for further development as drugs.
Assuntos
Anti-Infecciosos , Receptores de Formil Peptídeo , Animais , Camundongos , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias , Membranas , Receptores de Formil Peptídeo/antagonistas & inibidoresRESUMO
Disintegrins comprise a family of small proteins that bind to and alter the physiological function of integrins, especially integrins that mediate platelet aggregation in blood. Here, we report a lysine-glycine-aspartic acid (KGD) disintegrin-like motif present in a 15-amino acid residue peptide identified in a cDNA library of the amphibian Hypsiboas punctatus skin. The original peptide sequence was used as a template from which five new analogs were designed, chemically synthesized by solid phase, and tested for disintegrin activity and tridimensional structural studies using NMR spectroscopy. The original amphibian peptide had no effect on integrin-mediated responses. Nevertheless, derived peptide analogs inhibited integrin-mediated platelet function, including platelet spreading on fibrinogen.
Assuntos
Desintegrinas , Peptídeos , Anfíbios/genética , Anfíbios/metabolismo , Animais , DNA Complementar/genética , Desintegrinas/química , Desintegrinas/genética , Desintegrinas/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Agregação Plaquetária/fisiologiaRESUMO
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Assuntos
Nematoides/fisiologia , Peptídeos/química , Raízes de Plantas/metabolismo , Solanum lycopersicum/parasitologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Lipídeos/química , Peptídeos/metabolismo , Raízes de Plantas/parasitologiaRESUMO
Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, ß-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies.
Assuntos
Parede Celular/química , Proteínas Fúngicas/metabolismo , Fusarium/química , Glucose/farmacologia , Trichoderma/metabolismo , Antibiose , Agentes de Controle Biológico , Parede Celular/metabolismo , Quitinases/genética , Quitinases/metabolismo , Misturas Complexas/metabolismo , Misturas Complexas/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Eletroforese em Gel Bidimensional , Proteínas Fúngicas/genética , Fusarium/patogenicidade , Expressão Gênica , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucose/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Anotação de Sequência Molecular , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Trichoderma/efeitos dos fármacos , Trichoderma/genética , Trichoderma/crescimento & desenvolvimentoRESUMO
RATIONALE: Amphibians can produce a large amount of bioactive peptides over the skin. In order to map the precise tissue localization of these compounds and evaluate their functions, mass spectrometry imaging (MSI) and gene expression studies were used to investigate a possible correlation between molecules involved in the antimicrobial defense mechanisms and anti-predatory behavior by Physalaemus nattereri. METHODS: Total skin secretion of P. nattereri was analyzed by classical Protein Chemistry and proteomic techniques. Intact inguinal macroglands were dissected from the rest of the skin and both tissues were analyzed by MSI and real-time polymerase chain reaction (RT-PCR) experiments. Peptides were primarily identified by de novo sequencing, automatic Edman degradation and cDNA data. RESULTS: Fifteen bradykinin (BK)-related peptides and two antimicrobial peptides were sequenced and mapped by MSI on the inguinal macrogland and the rest of P. nattereri skin. RT-PCR results revealed that BK-related peptide levels of expression were about 30,000 times higher on the inguinal macroglands than on the any other region of the skin, whilst antimicrobial peptide ions appear to be evenly distributed in both investigated regions. CONCLUSIONS: The presence of antimicrobial peptides in all investigated tissue regions is in accordance with the defensive role against microorganisms thoroughly demonstrated in the literature, whereas BK-related molecules are largely found on the inguinal macroglands suggesting an intriguing link between their noxious activities against potential predators of P. nattereri and the frog's deimatic behavior.
Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Anuros/fisiologia , Pele/química , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros/classificação , Anuros/genética , Comportamento Animal , Feminino , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Mapeamento de Peptídeos , Proteômica , Pele/metabolismoRESUMO
BACKGROUND: Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS: We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS: The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.
Assuntos
Bradyrhizobium/metabolismo , Proteômica/métodos , Simbiose , Proteínas de Bactérias/metabolismo , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Biologia Computacional , Eletroforese em Gel Bidimensional , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Genoma Bacteriano , Fixação de Nitrogênio , Fases de Leitura Aberta/genética , Estresse FisiológicoRESUMO
Yeast identification using traditional methods which employ morphological, physiological, and biochemical characteristics can be considered a hard task as it requires experienced microbiologists and a rigorous control in culture conditions that could implicate in different outcomes. Considering clinical or industrial applications, the fast and accurate identification of microorganisms is a crescent demand. Hence, molecular biology approaches has been extensively used and, more recently, protein profiling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proved to be an even more efficient tool for taxonomic purposes. Nonetheless, concerning to mass spectrometry, data available for the differentiation of yeast species for industrial purpose is limited and reference databases commercially available comprise almost exclusively clinical microorganisms. In this context, studies focusing on environmental isolates are required to extend the existing databases. The development of a supplementary database and the assessment of a commercial database for taxonomic identifications of environmental yeast are the aims of this study. We challenge MALDI-TOF MS to create protein profiles for 845 yeast strains isolated from grape must and 67.7 % of the strains were successfully identified according to previously available manufacturer database. The remaining 32.3 % strains were not identified due to the absence of a reference spectrum. After matching the correct taxon for these strains by using molecular biology approaches, the spectra concerning the missing species were added in a supplementary database. This new library was able to accurately predict unidentified species at first instance by MALDI-TOF MS, proving it is a powerful tool for the identification of environmental yeasts.
Assuntos
Microbiologia Ambiental , Microbiologia de Alimentos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leveduras/química , Leveduras/classificação , Dados de Sequência Molecular , Análise de Sequência de DNA , Leveduras/genética , Leveduras/isolamento & purificaçãoRESUMO
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proven to be a powerful tool for taxonomic resolution of microorganisms. In this proof-of-concept study, we assessed the effectiveness of this technique to track the current gene sequence-based phylogenetic classification of species in the Metarhizium anisopliae complex. Initially the phylogenetic analysis of 5' strains by sequencing of the 59' end of the TEF-1α gene region revealed seven species within M. anisopliae sensu lato and two varieties outside this complex. Because initial studies on MS profiles from different cell types showed that mycelial fragments or conidia produced on nutrient-poor medium may yield too much background noise, all subsequent spectrometric analyses were performed with acidhydrolyzed conidia from 10-12 d old PDA cultures. The initial MALDI-TOF reference library included protein spectral profiles from nine taxonomically distinct, molecularly identified isolates sharing high genetic homology with the ex-type or ex-epitype isolates of these taxa in Metarhizium. A second reference library added one isolate each for M. anisopliae sensu stricto and M. robertsii. The second, larger reference library (including 11 taxa) allowed nearly perfect MALDI-TOF matching of DNA-based species identification for the 40 remaining isolates molecularly recognized as M. anisopliae sensu stricto (n = 19), M. robertsii (n = 6), M. majus (n = 3), M. lepidiotae (n = 1), M. acridum (n = 3), M. flavoviride var. pemphigi (n = 1), plus seven unidentified strains (six of them phylogenetically close to M. anisopliae sensu stricto and one outside the Metarhizium pingshaense-anisopliae-robertsii-brunneum clade). Due to the increasing frequency of phylogenetically (genomically) based taxonomic revisions of fungi, this approach is especially useful for culture collections, because once the protein profiles of Metarhizium isolates are obtained taxonomic updating of MALDI-TOF library data is easily accomplished by comparing stored profiles with those of newly proposed taxa.
Assuntos
Insetos/microbiologia , Metarhizium/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Sequência de Bases , Análise por Conglomerados , Custos e Análise de Custo , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metarhizium/genética , Metarhizium/isolamento & purificação , Metarhizium/metabolismo , Dados de Sequência Molecular , Micélio , Técnicas de Tipagem Micológica , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Esporos Fúngicos , Fatores de TempoRESUMO
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Assuntos
Anti-Infecciosos , Proteoma , Humanos , Proteoma/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , AminoácidosRESUMO
Spider venom toxins have raised interest in prospecting new drugs and pesticides. Nevertheless, few studies are conducted with tarantula toxins, especially with species found in Brazil. This study aims to characterize chemically and biologically the first toxin isolated from Acanthoscurria paulensis venom. Ap1a consists of 48 amino acid residues and has a molecular mass of 5457.79 Da. The cloned gene encodes a putative sequence of 23 amino acid residues for the signal peptide and 27 for the pro-peptide. The sequence of the mature peptide is 60-84% identical with those of toxins of the HWTX-II family. Different from the structural pattern proposed for these toxins, the disulfide pairing of Ap1a is of the ICK type motif, which is also shared by the U1-TRTX-Bs1a toxin. Ap1a induced a dose-dependent and reversible paralytic effect in Spodoptera frugiperda caterpillars, with an ED50 of 13.0 ± 4.2 µg/g 8 h after injections. In the Drosophila melanogaster Giant Fiber circuit, Ap1a (1.14-22.82 µg/g) reduces both the amplitude and frequency of responses from GF-TTM and GF-DLM pathways, suggesting an action at the neuromuscular junction, which is mediated by glutamatergic receptors. It is also lethal to mice (1.67 µg/g, intracranial route), inducing effects similar to those reported with intracerebroventricular administration of NMDA. Ap1a (1 µM) does not alter the response induced by acetylcholine on the rhabdomyosarcoma cell preparation and shows no significant effects on hNav1.2, hNav1.4, hNav1.5, and hNav1.6 channels. Because of its unique sequence and cysteine assignment to the HWTX-II family, Ap1a is a significant contribution to the structure-function study of this family of toxins.
Assuntos
Peptídeos/química , Peptídeos/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/química , Sequência de Aminoácidos , Animais , Cisteína/química , Feminino , Células HEK293 , Humanos , Insetos/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Paralisia/induzido quimicamente , Peptídeos/isolamento & purificação , Peptídeos/toxicidade , Estrutura Secundária de Proteína , Receptores Nicotínicos/metabolismo , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismoRESUMO
Mitochondrial cholesterol has been reported to be increased under specific pathological conditions associated with enhanced oxidative stress parameters. In this scenario, cholesterol oxidation would be increased, leading to the production of reactive aldehydes, including cholesterol carboxyaldehyde (ChAld). By using SDS micelles as a mitochondrial mimetic model, we have demonstrated that ChAld covalently modifies cytochrome c (cytc), a protein known to participate in electron transport and apoptosis signaling. This mimetic model induces changes in cytc structure in the same way as mitochondrial membranes do. Tryptic digestion of the cytc-ChAld adduct followed by MALDI-TOF/TOF analyses revealed that modifications occur at Lys residues (K22) localized at cytc site L, a site involved in protein-protein and protein-membrane interactions. Interestingly, ChAld ligation prevented cytc detachment from liposomes even under high ionic strength conditions. Overall, it can be concluded that ChAld ligation to Lys residues at site L creates a hydrophobic tail at cytc, which promotes cytc anchoring to the membrane. Although not investigated in detail in this study, cytc adduction to cholesterol derived aldehydes could have implications in cytc release from mitochondria under apoptotic stimuli.
Assuntos
Aldeídos/química , Materiais Biomiméticos/metabolismo , Colesterol/análogos & derivados , Colesterol/química , Citocromos c/metabolismo , Lipossomos/metabolismo , Mitocôndrias/metabolismo , Aldeídos/toxicidade , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Bovinos , Citocromos c/química , Transporte de Elétrons/efeitos dos fármacos , Luz , Lipossomos/química , Lisina/química , Modelos Moleculares , Miocárdio/metabolismo , Oxirredução , Peptídeos/análise , Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Tripsina/metabolismoRESUMO
BACKGROUND: Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some ß-sheets. METHODS: The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of ß-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS: Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a ß-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS: Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE: This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Lipopolissacarídeos/farmacologia , Proteoma , Bactérias Gram-Negativas/metabolismo , Peptídeos/químicaRESUMO
Colorectal cancer (CRC) ranks second as the leading cause of cancer-related deaths worldwide. N-glycosylation is one of the most common posttranslational protein modifications. Therefore, we studied the total serum N-glycome (TSNG) of 13 colon cancer patients compared to healthy controls using MALDI-TOF/MS and LC-MS. N-glycosylation of cancer tumor samples from the same cohort were further quantified using a similar methodology. In total, 23 N-glycan compositions were down-regulated in the serum of colon cancer patients, mostly galactosylated forms whilst the mannose-rich HexNAc2Hex7, the fucosylated bi-antennary glycan HexNAc4Hex5Fuc1NeuAc2, and the tetra-antennary HexNAc6Hex7NeuAc3 were up-regulated in serum. Hierarchical clustering analysis of TSNG correctly singled out 85% of the patients from controls. Albeit heterogenous, N-glycosylation of tumor samples showed overrepresented oligomannosidic, bi-antennary hypogalactosylated, and branched compositions related to normal colonic tissue, in both MALDI-TOF/MS and LC-MS analysis. Moreover, compositions found upregulated in tumor tissue were mostly uncorrelated to compositions in serum of cancer patients. Mass spectrometry-based N-glycan profiling in serum shows potential in the discrimination of patients from healthy controls. However, the compositions profile in serum showed no parallel with N-glycans in tumor microenvironment, which suggests a different origin of compositions found in serum of cancer patients.
RESUMO
BACKGROUND: Almost all Tityus characterized toxins are from subgenera Atreus and Tityus, there are only a few data about toxins produced by Archaeotityus, an ancient group in Tityus genus. METHODS: Tityus (Archaeotityus) mattogrossensis crude venom was fractionated by high performance liquid chromatography, the major fractions were tested in a frog sciatic nerve single sucrose-gap technique. Two fractions (Tm1 and Tm2) were isolated, partially sequenced by MALDI-TOF/MS and electrophysiological assayed on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells. RESULTS: The sucrose-gap technique showed neurotoxicity in four fractions. One fraction caused a delay of action potential repolarization and other three caused a reduction in amplitude. An electrophysiological assay showed that Tm1 is active on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells, and Tm2 on HEK293 Nav 1.3 and DRG cells, but not in HEK293 Nav 1.6. In addition, Tm1 and Tm2 did promote a shift to more negative potentials strongly suggesting that both are α-NaScTx. CONCLUSION: Although Tityus (Archaeotityus) mattogrossensis is considered an ancient group in Tityus genus, the primary structure of Tm1 and Tm2 is more related to Tityus subgenus. The patch clamp electrophysiological tests suggest that Tm1 and Tm2 are NaScTx, and also promoted no shift to more negative potentials, strongly suggesting that both are α-NaScTx. This paper aimed to explore and characterize for the first time toxins from the ancient scorpion Tityus (Archaeotityus) mattogrossensis.
RESUMO
The emergence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, has exacerbated the treatment and control of this disease. Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that recycles cytidine and 2'-deoxycytidine for uridine and 2'-deoxyuridine synthesis, respectively. A probable M. tuberculosis CDA-coding sequence (cdd, Rv3315c) was cloned, sequenced, expressed in Escherichia coli BL21(DE3), and purified to homogeneity. Mass spectrometry, N-terminal amino acid sequencing, gel filtration chromatography, and metal analysis of M. tuberculosis CDA (MtCDA) were carried out. These results and multiple sequence alignment demonstrate that MtCDA is a homotetrameric Zn(2+)-dependent metalloenzyme. Steady-state kinetic measurements yielded the following parameters: K(m)=1004 microM and k(cat)=4.8s(-1) for cytidine, and K(m)=1059 microM and k(cat)=3.5s(-1) for 2'-deoxycytidine. The pH dependence of k(cat) and k(cat)/K(M) for cytidine indicate that protonation of a single ionizable group with apparent pK(a) value of 4.3 abolishes activity, and protonation of a group with pK(a) value of 4.7 reduces binding. MtCDA was crystallized and crystal diffracted at 2.0 A resolution. Analysis of the crystallographic structure indicated the presence of a Zn(2+) coordinated by three conserved cysteines and the structure exhibits the canonical cytidine deaminase fold.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citidina Desaminase/química , Citidina Desaminase/metabolismo , Mycobacterium tuberculosis/enzimologia , Zinco/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Citidina Desaminase/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria AtômicaRESUMO
Urate oxidase (EC 1.7.3.3) is an enzyme involved in purine metabolism which is used in the treatment of gout and as diagnostic reagent for detection of uric acid. In order to produce this enzyme in large quantities for biotechnological purposes, the gene coding for the Bacillus subtilis urate oxidase was cloned and heterologously expressed in Escherichia coli. Time course induction in E. coli showed an induced protein with an apparent molecular mass of approximately 60 kDa. Soluble recombinant enzyme was purified in a single-step procedure using Ni-NTA column. The enzyme was purified 2.1-fold with a yield of 56% compared to the crude extract. MALDI-TOF analysis revealed an ion with a mass of 58675 Da which is in agreement with the expected mass of the recombinant protein. The purified enzyme showed an optimal pH and temperature of 8.0 and 37 degrees C, respectively, and retained 90% of its activity after 72 hours of incubation at -20 degrees C and 4 degrees C.
Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/metabolismo , Urato Oxidase/genética , Urato Oxidase/isolamento & purificação , Clonagem Molecular , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Fatores de Tempo , Urato Oxidase/químicaRESUMO
Peptidase inhibitors (PIs) have been broadly studied due to their wide therapeutic potential for human diseases. A potent trypsin inhibitor from Tityus obscurus scorpion venom was characterized and named ToPI1, with 33 amino acid residues and three disulfide bonds. The X-ray structure of the ToPI1:trypsin complex, in association with the mass spectrometry data, indicate a sequential set of events: the complex formation with the inhibitor Lys32 in the trypsin S1 pocket, the inhibitor C-terminal residue Ser33 cleavage, and the cyclization of ToPI1 via a peptide bond between residues Ile1 and Lys32. Kinetic and thermodynamic characterization of the complex was obtained. ToPI1 shares no sequence similarity with other PIs characterized to date and is the first PI with CS-α/ß motif described from animal venoms. In its cyclic form, it shares structural similarities with plant cyclotides that also inhibit trypsin. These results bring new insights for studies with venom compounds, PIs, and drug design.
Assuntos
Ciclotídeos/química , Ciclotídeos/metabolismo , Venenos de Escorpião/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Ciclização , Modelos Moleculares , Ligação Proteica , Conformação ProteicaRESUMO
Leishmania protozoans are the causal agents of neglected diseases that represent an important public health issue worldwide. The growing occurrence of drug-resistant strains of Leishmania and severe side effects of available treatments represent an important challenge for the leishmaniases treatment. We have previously reported the leishmanicidal activity of phylloseptin-1 (PSN-1), a peptide found in the skin secretion of Phyllomedusaazurea (=Pithecopus azureus), against Leishmaniaamazonensis promastigotes. However, its impact on the amastigote form of L. amazonensis and its impact on infected macrophages are unknown. In this work, we evaluated the effects of PSN-1 on amastigotes of L. amazonensis inside macrophages infected in vitro. We assessed the production of hydrogen peroxide and nitric oxide, as well as the levels of inflammatory and immunomodulatory markers (TGF-ß, TNF-α and IL-12), in infected and non-infected macrophages treated with PSN-1. Treatment with PSN-1 decreased the number of infected cells and the number of ingested amastigotes per cell when compared with the untreated cells. At 32 µM (64 µg/mL), PSN-1 reduced hydrogen peroxide levels in both infected and uninfected macrophages, whereas it had little effect on NO production or TGF-ß release. The effect of PSN-1 on IL-12 and TNF-α secretion depended on its concentration, but, in general, their levels tended to increase as PSN-1 concentration increased. Further in vitro and in vivo studies are needed to clarify the mechanisms of action of PSN-1 and its interaction with the immune system aiming to develop pharmacological applications.
Assuntos
Leishmania , Macrófagos Peritoneais , Animais , Feminino , Macrófagos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
An actual severe problem in agriculture consists of an expressive increase of economical losses caused by fungi and resistant bacteria toward antibiotics. In order to find a solution to this problem, several studies have been concentrating on the screening of novel plant defense peptides with antimicrobial activities. These peptides are commonly characterized by having low molecular masses and cationic charges. The present work reports the purification and characterization of a novel plant peptide with molecular mass of 5340 Da, named Cp-AMP, from seeds of C. pallida, a typical plant from Caatinga biome. Purification was achieved using a size exclusion S-200 column followed by reversed-phase chromatography on Vydac C18-TP column. In vitro assays indicated that Cp-AMP was able to inhibit the development of filamentous fungi Fusarium oxysporum as well as the gram-negative bacterium Proteus sp. The identification of Cp-AMP could contribute, in the near future, to the development of biotechnological products, such as transgenic plants with enhanced resistance to pathogenic fungi and/or of antibiotics production derived from plant sources in order to control bacterial infections.
Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Crotalaria/química , Fusarium/efeitos dos fármacos , Proteus/efeitos dos fármacos , Sementes/química , Peptídeos Catiônicos Antimicrobianos/química , Cromatografia Líquida/métodos , Peso Molecular , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologiaRESUMO
The development of drug resistance by infectious agents represents a major hindrance for controlling parasitic diseases and has stimulated the search for new compounds. We have previously shown that phylloseptin-1 (PS-1), a cationic peptide from the skin secretion of Phyllomedusa azurea, exhibited potent antimicrobial activity. Now we evaluate the effect of PS-1 on Leishmania amazonensis and Plasmodium falciparum. Concentrations as low as 0.5 microg/mL of PS-1 exhibited antileishmanial activity comparable to that of antimoniate of N-metilglucamine, while the antiplasmodial effect of PS-1 was evident at the concentration of 16 microg/mL, and reached an activity comparable to that of artesunate, at the concentration of 64 microg/mL. The high antiparasitic activity of PS-1, together with the unrelatedness of its chemical structure to any present antimicrobial drug, which prevents the development of cross-resistance, together with its non-toxicity to mammalian cells make this peptide a promising candidate for the treatment of malaria and leishmaniasis.