Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nat Methods ; 21(7): 1245-1256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844629

RESUMO

Microscopy-based spatially resolved omic methods are transforming the life sciences. However, these methods rely on high numerical aperture objectives and cannot resolve crowded molecular targets, limiting the amount of extractable biological information. To overcome these limitations, here we develop Deconwolf, an open-source, user-friendly software for high-performance deconvolution of widefield fluorescence microscopy images, which efficiently runs on laptop computers. Deconwolf enables accurate quantification of crowded diffraction limited fluorescence dots in DNA and RNA fluorescence in situ hybridization images and allows robust detection of individual transcripts in tissue sections imaged with ×20 air objectives. Deconvolution of in situ spatial transcriptomics images with Deconwolf increased the number of transcripts identified more than threefold, while the application of Deconwolf to images obtained by fluorescence in situ sequencing of barcoded Oligopaint probes drastically improved chromosome tracing. Deconwolf greatly facilitates the use of deconvolution in many bioimaging applications.


Assuntos
Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Software , Microscopia de Fluorescência/métodos , Hibridização in Situ Fluorescente/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Camundongos , Humanos
2.
Kidney Int ; 104(6): 1164-1169, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774923

RESUMO

Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.


Assuntos
Podócitos , Animais , Camundongos , Capilares , Orientação Espacial , Glomérulos Renais , Artéria Renal , Mamíferos
3.
Kidney Int ; 103(6): 1120-1130, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990215

RESUMO

Morphological alterations at the kidney filtration barrier increase intrinsic capillary wall permeability resulting in albuminuria. However, automated, quantitative assessment of these morphological changes has not been possible with electron or light microscopy. Here we present a deep learning-based approach for segmentation and quantitative analysis of foot processes in images acquired with confocal and super-resolution fluorescence microscopy. Our method, Automatic Morphological Analysis of Podocytes (AMAP), accurately segments podocyte foot processes and quantifies their morphology. AMAP applied to a set of kidney diseases in patient biopsies and a mouse model of focal segmental glomerulosclerosis allowed for accurate and comprehensive quantification of various morphometric features. With the use of AMAP, detailed morphology of podocyte foot process effacement was found to differ between categories of kidney pathologies, showed detailed variability between diverse patients with the same clinical diagnosis, and correlated with levels of proteinuria. AMAP could potentially complement other readouts such as various omics, standard histologic/electron microscopy and blood/urine assays for future personalized diagnosis and treatment of kidney disease. Thus, our novel finding could have implications to afford an understanding of early phases of kidney disease progression and may provide supplemental information in precision diagnostics.


Assuntos
Aprendizado Profundo , Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Camundongos , Animais , Podócitos/patologia , Glomérulos Renais/patologia , Rim/diagnóstico por imagem , Rim/patologia , Glomerulosclerose Segmentar e Focal/diagnóstico por imagem , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/diagnóstico por imagem , Nefropatias/patologia
4.
J Am Soc Nephrol ; 33(1): 138-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853150

RESUMO

BACKGROUND: Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS: To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS: Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS: Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.


Assuntos
Albuminúria/genética , Predisposição Genética para Doença/genética , Barreira de Filtração Glomerular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nefropatias/genética , Proteínas de Membrana/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/patologia
5.
Kidney Int ; 99(4): 1010-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285146

RESUMO

In recent years, many light-microscopy protocols have been published for visualization of nanoscale structures in the kidney. These protocols present researchers with new tools to evaluate both foot process anatomy and effacement, as well as protein distributions in foot processes, the slit diaphragm and in the glomerular basement membrane. However, these protocols either involve the application of different complicated super resolution microscopes or lengthy sample preparation protocols. Here, we present a fast and simple, five-hour long procedure for three-dimensional visualization of kidney morphology on all length scales. The protocol combines optical clearing and tissue expansion concepts to produce a mild swelling, sufficient for resolving nanoscale structures using a conventional confocal microscope. We show that the protocol can be applied to visualize a wide variety of pathologic features in both mouse and human kidneys. Thus, our fast and simple protocol can be beneficial for conventional microscopic evaluation of kidney tissue integrity both in research and possibly in future clinical routines.


Assuntos
Glomérulos Renais , Rim , Animais , Rim/diagnóstico por imagem , Camundongos , Microscopia
6.
J Cell Sci ; 131(5)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420300

RESUMO

Sexual dimorphism has been used to describe morphological differences between the sexes, but can be extended to any biologically related process that varies between males and females. The synaptonemal complex (SC) is a tripartite structure that connects homologous chromosomes in meiosis. Here, aided by super-resolution microscopy techniques, we show that the SC is subject to sexual dimorphism, in mouse germ cells. We have identified a significantly narrower SC in oocytes and have established that this difference does not arise from a different organization of the lateral elements nor from a different isoform of transverse filament protein SYCP1. Instead, we provide evidence for the existence of a narrower central element and a different integration site for the C-termini of SYCP1, in females. In addition to these female-specific features, we speculate that post-translation modifications affecting the SYCP1 coiled-coil region could render a more compact conformation, thus contributing to the narrower SC observed in females.


Assuntos
Proteínas Nucleares/genética , Oócitos/ultraestrutura , Espermatócitos/ultraestrutura , Complexo Sinaptonêmico/ultraestrutura , Animais , Proteínas de Ligação a DNA , Feminino , Masculino , Meiose/genética , Camundongos , Proteínas Nucleares/química , Oócitos/metabolismo , Gravidez , Conformação Proteica , Caracteres Sexuais , Espermatócitos/metabolismo , Complexo Sinaptonêmico/genética , Testículo/metabolismo , Testículo/ultraestrutura
7.
FASEB J ; 33(3): 4089-4096, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496703

RESUMO

The central role of calcium signaling during development of early vertebrates is well documented, but little is known about its role in mammalian embryogenesis. We have used immunofluorescence and time-lapse calcium imaging of cultured explanted embryonic rat kidneys to study the role of calcium signaling for branching morphogenesis. In mesenchymal cells, we recorded spontaneous calcium activity that was characterized by irregular calcium transients. The calcium signals were dependent on release of calcium from intracellular stores in the endoplasmic reticulum. Down-regulation of the calcium activity, both by blocking the sarco-endoplasmic reticulum Ca2+-ATPase and by chelating cytosolic calcium, resulted in retardation of branching morphogenesis and a reduced formation of primitive nephrons but had no effect on cell proliferation. We propose that spontaneous calcium activity contributes with a stochastic factor to the self-organizing process that controls branching morphogenesis, a major determinant of the ultimate number of nephrons in the kidney.-Fontana, J. M., Khodus, G. R., Unnersjö-Jess, D., Blom, H., Aperia, A., Brismar, H. Spontaneous calcium activity in metanephric mesenchymal cells regulates branching morphogenesis in the embryonic kidney.


Assuntos
Sinalização do Cálcio , Células-Tronco Embrionárias/metabolismo , Rim/metabolismo , Morfogênese , Animais , Retículo Endoplasmático/metabolismo , Rim/citologia , Rim/embriologia , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
8.
Nature ; 513(7519): 551-4, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25079316

RESUMO

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.


Assuntos
Diferenciação Celular , Linhagem da Célula , Incisivo/citologia , Células-Tronco Mesenquimais/citologia , Neuroglia/citologia , Animais , Rastreamento de Células , Células Clonais/citologia , Polpa Dentária/citologia , Feminino , Incisivo/embriologia , Masculino , Camundongos , Modelos Biológicos , Crista Neural/citologia , Odontoblastos/citologia , Regeneração , Células de Schwann/citologia
9.
Chem Rev ; 117(11): 7377-7427, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28262022

RESUMO

Despite its short history, diffraction-unlimited fluorescence microscopy techniques have already made a substantial imprint in the biological sciences. In this review, we describe how stimulated emission depletion (STED) imaging originally evolved, how it compares to other optical super-resolution imaging techniques, and what advantages it provides compared to previous golden-standards for biological microscopy, such as diffraction-limited optical microscopy and electron microscopy. We outline the prerequisites for successful STED imaging experiments, emphasizing the equally critical roles of instrumentation, sample preparation, and photophysics, and describe major evolving strategies for how to push the borders of STED imaging even further in life science. Finally, we provide examples of how STED nanoscopy can be applied, within three different fields with particular potential for STED imaging experiments: neuroscience, plasma membrane biophysics, and subcellular clinical diagnostics. In these areas, and in many more, STED imaging can be expected to play an increasingly important role in the future.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência
10.
Kidney Int ; 93(4): 1008-1013, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29241621

RESUMO

The glomerular filtration barrier, has historically only been spatially resolved using electron microscopy due to the nanometer-scale dimensions of these structures. Recently, it was shown that the nanoscale distribution of proteins in the slit diaphragm can be resolved by fluorescence based stimulated emission depletion microscopy, in combination with optical clearing. Fluorescence microscopy has advantages over electron microscopy in terms of multiplex imaging of different epitopes, and also the amount of volumetric data that can be extracted from thicker samples. However, stimulated emission depletion microscopy is still a costly technique commonly not available to most life science researchers. An imaging technique with which the glomerular filtration barrier can be visualized using more standard fluorescence imaging techniques is thus desirable. Recent studies have shown that biological tissue samples can be isotropically expanded, revealing nanoscale localizations of multiple epitopes using confocal microscopy. Here we show that kidney samples can be expanded sufficiently to study the finest elements of the filtration barrier using confocal microscopy. Thus, our result opens up the possibility to study protein distributions and foot process morphology on the effective nanometer-scale.


Assuntos
Barreira de Filtração Glomerular/patologia , Glomerulonefrite/patologia , Microscopia Confocal , Microscopia de Fluorescência , Expansão de Tecido/métodos , Animais , Autoanticorpos , Biomarcadores/metabolismo , Colágeno Tipo IV/imunologia , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Barreira de Filtração Glomerular/imunologia , Barreira de Filtração Glomerular/metabolismo , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Ratos
11.
EMBO Rep ; 17(6): 901-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27170622

RESUMO

During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.


Assuntos
Cromátides/genética , Cromátides/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Complexo Sinaptonêmico , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosfoproteínas/genética , Subunidades Proteicas/metabolismo , Troca de Cromátide Irmã , Espermatócitos/metabolismo , Coesinas
12.
Acta Paediatr ; 107(2): 255-261, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28871598

RESUMO

AIM: There is no evidence on the effect of universal ultrasound screening on developmental dysplasia of the hip. We examined the impact of adding an ultrasound examination to a one examiner clinical screening strategy on treatment, follow-up rates and the number of cases detected late in a low-prevalence population. METHODS: All eligible babies born at Kongsberg Hospital, Norway, from 1998 to 2006 (n = 4245) underwent both clinical and ultrasound hip examinations within three days of life. Indications for immediate treatment were positive Barlow or Ortolani manoeuvres and, or, sonographic dysplasia. Sonographic immature hips were followed until normalisation. Treatment rates and rates from the 1989 to 1997 prestudy period (n = 3594), including late diagnoses, were collected from hospital records. RESULTS: Treatment was initiated in 90 (2.1%) infants (74 girls), 63 (70%) from birth, compared to 33 (0.9%) during the prestudy period. The follow-up rate did not change (11%). There were two (0.5/1000) and four (1.0/1000) cases detected late, respectively. No one underwent surgery during the first year of life and no avascular necrosis was seen. CONCLUSION: Adding universal ultrasound to clinical screening performed by the same, experienced paediatrician doubled the treatment rate, without influencing the already low numbers of late cases.


Assuntos
Luxação Congênita de Quadril/diagnóstico por imagem , Programas de Rastreamento , Ultrassonografia , Diagnóstico Tardio , Feminino , Luxação Congênita de Quadril/epidemiologia , Luxação Congênita de Quadril/terapia , Humanos , Lactente , Recém-Nascido , Masculino , Triagem Neonatal , Noruega/epidemiologia , Prevalência , Radiografia , Estudos Retrospectivos
13.
PLoS Pathog ; 11(10): e1005206, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26440518

RESUMO

The transport of antigen from the periphery to the draining lymph node (DLN) is critical for T-cell priming but remains poorly studied during infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG). To address this we employed a mouse model to track the traffic of Dendritic cells (DCs) and mycobacteria from the BCG inoculation site in the skin to the DLN. Detection of BCG in the DLN was concomitant with the priming of antigen-specific CD4+ T cells at that site. We found EpCAMlow CD11bhigh migratory skin DCs to be mobilized during the transport of BCG to the DLN. Migratory skin DCs distributed to the T-cell area of the LN, co-localized with BCG and were found in close apposition to antigen-specific CD4+ T cells. Consequently, blockade of skin DC traffic into DLN dramatically reduced mycobacterial entry into DLN and muted T-cell priming. Interestingly, DC and mycobacterial entry into the DLN was dependent on IL-1R-I, MyD88, TNFR-I and IL-12p40. In addition, we found using DC adoptive transfers that the requirement for MyD88 in BCG-triggered migration was not restricted to the migrating DC itself and that hematopoietic expression of MyD88 was needed in part for full-fledged migration. Our observations thus identify a population of DCs that contribute towards the priming of CD4+ T cells to BCG infection by transporting bacilli into the DLN in an IL-1R-MyD88-dependent manner and reveal both DC-intrinsic and -extrinsic requirements for MyD88 in DC migration.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Animais , Movimento Celular/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mycobacterium bovis/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-1/imunologia , Pele/imunologia , Pele/microbiologia , Tuberculose/imunologia , Tuberculose/prevenção & controle
14.
Kidney Int ; 89(1): 243-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26444032

RESUMO

The glomerular filtration barrier, consisting of podocyte foot processes with bridging slit diaphragm, glomerular basement membrane, and endothelium, is a key component for renal function. Previously, the subtlest elements of the filtration barrier have only been visualized using electron microscopy. However, electron microscopy is mostly restricted to ultrathin two-dimensional samples, and the possibility to simultaneously visualize multiple different proteins is limited. Therefore, we sought to implement a super-resolution immunofluorescence microscopy protocol for the study of the filtration barrier in the kidney. Recently, several optical clearing methods have been developed making it possible to image through large volumes of tissue and even whole organs using light microscopy. Here we found that hydrogel-based optical clearing is a beneficial tool to study intact renal tissue at the nanometer scale. When imaging samples using super-resolution STED microscopy, the staining quality was critical in order to assess correct nanoscale information. The signal-to-noise ratio and immunosignal homogeneity were both improved in optically cleared tissue. Thus, STED of slit diaphragms in fluorescently labeled, optically cleared, intact kidney samples is a new tool for studying the glomerular filtration barrier in health and disease.


Assuntos
Barreira de Filtração Glomerular/química , Hidrogéis , Imagem Molecular/métodos , Animais , Corantes Fluorescentes , Peptídeos e Proteínas de Sinalização Intracelular/análise , Proteínas de Membrana/análise , Microscopia Confocal , Microscopia de Fluorescência , Nefrite/metabolismo , Ratos , Razão Sinal-Ruído , Coloração e Rotulagem
15.
Cell Tissue Res ; 365(1): 13-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26941236

RESUMO

Globally 360 million people have disabling hearing loss and, of these, 32 million are children. Human hearing relies on 15,000 hair cells that transduce mechanical vibrations to electrical signals in the auditory nerve. The process is powered by the endo-cochlear potential, which is produced by a vascularized epithelium that actively transports ions in conjunction with a gap junction (GJ) system. This "battery" is located "off-site" in the lateral wall of the cochlea. The GJ syncytium contains the GJ protein genes beta 2 (GJB2/connexin26 (Cx26)) and 6 (GJB6/connexin30 (Cx30)), which are commonly involved in hereditary deafness. Because the molecular arrangement of these proteins is obscure, we analyze GJ protein expression (Cx26/30) in human cochleae by using super-resolution structured illumination microscopy. At this resolution, the Cx26 and Cx30 proteins were visible as separate plaques, rather than being co-localized in heterotypic channels, as previously suggested. The Cx26 and Cx30 proteins thus seem not to be co-expressed but to form closely associated assemblies of GJ plaques. These results could assist in the development of strategies to treat genetic hearing loss in the future.


Assuntos
Cóclea/metabolismo , Conexina 26/metabolismo , Conexinas/metabolismo , Microscopia de Fluorescência/métodos , Adulto , Idoso , Cóclea/ultraestrutura , Conexina 30 , Feminino , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Canais de Potássio/metabolismo
16.
Exp Cell Res ; 333(2): 208-219, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25746724

RESUMO

RhoD is a member of the Rho GTPase family and it coordinates actin dynamics and membrane trafficking. Activation of RhoD results in formation of filopodia, dissolution of stress fibers, and the subsequent formation of short actin bundles. In addition, RhoD localizes to early endosomes and recycling endosomes, and has a regulatory role in endosome trafficking. In this study, we report on a function of RhoD in the regulation of Golgi homeostasis. We show that manipulation of protein and activation levels of RhoD, as well as of its binding partner WHAMM, result in derailed localization of Golgi stacks. Moreover, vesicle trafficking from the endoplasmic reticulum to the plasma membrane via the Golgi apparatus measured by the VSV-G protein is severely hampered by manipulation of RhoD or WHAMM. In summary, our studies demonstrate a novel role for this member of the Rho GTPases in the regulation of Golgi function.


Assuntos
Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Membranas Intracelulares/enzimologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Células COS , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico , Vesículas Transportadoras/metabolismo
17.
Mol Microbiol ; 92(1): 1-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24506818

RESUMO

In most bacteria cell division is mediated by a protein super-complex called the divisome that co-ordinates the constriction and scission of the cell envelope. FtsZ is the first of the divisome proteins to accumulate at the division site and is widely thought to function as a force generator that constricts the cell envelope. In this study we have used a combination of confocal fluorescence microscopy and fluorescence recovery after photobleaching (FRAP) to determine if divisome proteins are present at the septum at the time of cytoplasmic compartmentalization in Escherichia coli. Our data suggest that many are, but that FtsZ and ZapA disassemble before the cytoplasm is sealed by constriction of the inner membrane. This observation implies that FtsZ cannot be a force generator during the final stage(s) of envelope constriction in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Citoplasma/fisiologia , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Divisão Celular/fisiologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Microscopia Confocal , Proteínas Recombinantes de Fusão/metabolismo
18.
J Phys Chem B ; 128(9): 2154-2167, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38415644

RESUMO

The structural diversity of different lipid species within the membrane defines its biophysical properties such as membrane fluidity, phase transition, curvature, charge distribution, and tension. Environment-sensitive probes, which change their spectral properties in response to their surrounding milieu, have greatly contributed to our understanding of such biophysical properties. To realize the full potential of these probes and avoid misinterpretation of their spectral responses, a detailed investigation of their fluorescence characteristics in different environments is necessary. Here, we examined the fluorescence lifetime of two newly developed membrane order probes, NR12S and NR12A, in response to alterations in their environments such as the degree of lipid saturation, cholesterol content, double bond position and configuration, and phospholipid headgroup. As a comparison, we investigated the lifetime sensitivity of the membrane tension probe Flipper in these environments. Applying fluorescence lifetime imaging microscopy (FLIM) in both model membranes and biological membranes, all probes distinguished membrane phases by lifetime but exhibited different lifetime sensitivities to varying membrane biophysical properties (e.g., cholesterol). While the lifetime of Flipper is particularly sensitive to the membrane cholesterol content, the NR12S and NR12A lifetimes are moderately sensitive to both the cholesterol content and lipid acyl chains. Moreover, all of the probes exhibit longer lifetimes at longer emission wavelengths in membranes of any complexity. This emission wavelength dependency results in varying lifetime resolutions at different spectral regions, which are highly relevant for FLIM data acquisition. Our data provide valuable insights on how to perform FLIM with these probes and highlight both their potential and limitations.


Assuntos
Corantes Fluorescentes , Fluidez de Membrana , Corantes Fluorescentes/química , Membrana Celular/química , Fosfolipídeos , Colesterol/análise , Espectrometria de Fluorescência/métodos
19.
J Biol Chem ; 287(14): 11018-29, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334685

RESUMO

The pneumococcal autolysin LytA is a virulence factor involved in autolysis as well as in fratricidal- and penicillin-induced lysis. In this study, we used biochemical and molecular biological approaches to elucidate which factors control the cytoplasmic translocation and lytic activation of LytA. We show that LytA is mainly localized intracellularly, as only a small fraction was found attached to the extracellular cell wall. By manipulating the extracellular concentration of LytA, we found that the cells were protected from lysis during exponential growth, but not in the stationary phase, and that a defined threshold concentration of extracellular LytA dictates the onset of autolysis. Stalling growth through nutrient depletion, or the specific arrest of cell wall synthesis, sensitized cells for LytA-mediated lysis. Inhibition of cell wall association via the choline binding domain of an exogenously added enzymatically inactive form of LytA revealed a potential substrate for the amidase domain within the cell wall where the formation of nascent peptidoglycan occurs.


Assuntos
Bacteriólise , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/enzimologia , Antibacterianos/farmacologia , Bacteriólise/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo
20.
Cytometry A ; 83(9): 855-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23657948

RESUMO

The ability of tumor cells to invade into the surrounding tissue is linked to defective adhesive and mechanical properties of the cells, which are regulated by cell surface adhesions and the intracellular filamentous cytoskeleton, respectively. With the aim to further reveal the underlying mechanisms and provide new strategies for early cancer diagnostics, we have used ultrahigh resolution stimulated emission depletion (STED) microscopy as a means to identify metastasizing cells, based on their subcellular protein distribution patterns reflecting their specific adhesive and mechanical properties. We have compared the spatial distribution of cell-matrix adhesion sites and the vimentin filamentous systems in a matched pair of primary, normal, and metastatic human fibroblast cells. We found that the metastatic cells showed significantly increased densities and more homogenous distributions of nanoscale adhesion-related particles. Moreover, they showed an increase in the number but reduced sizes of the areas of cell-matrix adhesion complexes. The organization of the vimentin intermediate filaments was also found to be significantly different in the metastasizing cells, showing an increased entanglement and loss of directionality. Image analysis procedures were established, allowing an objective detection and characterization of these features and distinction of metastatic cells from their normal counterparts. In conclusion, our results suggest that STED microscopy provides a novel tool to identify metastasizing cells from a very sparse number of cells, based on the altered spatial distribution of the cell-matrix adhesions and intermediate filaments.


Assuntos
Microscopia/métodos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Vimentina/análise , Adesão Celular , Movimento Celular , Junções Célula-Matriz/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Células Tumorais Cultivadas , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA