Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
BMC Genomics ; 25(1): 192, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373909

RESUMO

BACKGROUND: Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS: De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS: The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni/genética , Biomphalaria/genética , Transcriptoma , Genômica , Quênia
2.
Exp Parasitol ; 253: 108590, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544398

RESUMO

Hookworm infection is a major public health problem in many regions of the world. Given the high levels of host morbidity and even mortality of the host caused by these infections, it is crucial to understand the genetic structure of hookworm populations. This understanding can provide insights into the ecology, transmission patterns, mechanisms of drug resistance, and the development of vaccines and immunotherapeutic strategies. Previously, we examined presumably neutral molecular markers, such as microsatellites and COI (Cytochrome C oxidase subunit 1) in Brazilian populations of Ancylostoma caninum. Here we analyze the molecular variability of a genomic fragment of the Aca-asp-2 (Ancylostoma secreted protein-2) gene from Ancylostoma caninum. This gene is a highly expressed and activated following the infection of the L3 larvae in the host. We obtained individuals of A. caninum from five different geographic locations in Brazil, sequenced and analyzed parts of the gene. The results revealed extensive polymorphism at this fragment, especially in the intronic region, indicating low selective pressure acting on these sequences. However, we also observed irregular distributions of nucleotides and polymorphisms in the coding region of this gene, resulting in the identification of 27 alleles. The data presented here contribute to expanding the understanding of population genetic studies of hookworms.


Assuntos
Ancylostoma , Ancylostomatoidea , Humanos , Animais , Ancylostoma/genética , Ancylostomatoidea/genética , Sequência de Bases , Polimorfismo Genético , Genética Populacional
3.
Proc Natl Acad Sci U S A ; 115(17): 4441-4446, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29643072

RESUMO

The maintenance of diverse life history strategies within and among species remains a fundamental question in ecology and evolutionary biology. By using a near-complete 16-year pedigree of 12,579 winter-run steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, we examined the continued maintenance of two life history traits: the number of lifetime spawning events (semelparous vs. iteroparous) and age at first spawning (2-5 years). We found that repeat-spawning fish had more than 2.5 times the lifetime reproductive success of single-spawning fish. However, first-time repeat-spawning fish had significantly lower reproductive success than single-spawning fish of the same age, suggesting that repeat-spawning fish forego early reproduction to devote additional energy to continued survival. For single-spawning fish, we also found evidence for a fitness trade-off for age at spawning: older, larger males had higher reproductive success than younger, smaller males. For females, in contrast, we found that 3-year-old fish had the highest mean lifetime reproductive success despite the observation that 4- and 5-year-old fish were both longer and heavier. This phenomenon was explained by negative frequency-dependent selection: as 4- and 5-year-old fish decreased in frequency on the spawning grounds, their lifetime reproductive success became greater than that of the 3-year-old fish. Using a combination of mathematical and individual-based models parameterized with our empirical estimates, we demonstrate that both fitness trade-offs and negative frequency-dependent selection observed in the empirical data can theoretically maintain the diverse life history strategies found in this population.


Assuntos
Longevidade/fisiologia , Oncorhynchus mykiss/fisiologia , Reprodução/fisiologia , Seleção Genética/fisiologia , Animais , Feminino , Masculino , Oregon
4.
Fish Shellfish Immunol ; 105: 203-208, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32702479

RESUMO

Planorbid freshwater snails are important intermediate hosts for parasitic diseases caused by parasitic worms, most notably schistosomiasis. There are numerous reports of snails, specifically Biomphalaria glabrata, having compromised defences against schistosomes after being exposed to thermal stress. Environmental modifications to the defenses of schistosome transmitting snails could have negative ramifications for human disease risk in the context of climate change. Here the effects of heat shock on the production of hydrogen peroxide, a primary anti-microbial effector in many molluscs, were examined. The present findings show that heat shock increases NADPH oxidase 2 mRNA levels and hydrogen peroxide produced by snail hemocytes, and that both of these phenotypes could be reversed by an HSP-90 inhibitor. These findings indicate that snail defense systems are altered by heat shock at a molecular level in B. glabrata, and that snail immunity to many pathogens may be altered by the rapid variations in temperature that are associated with global climate change.


Assuntos
Biomphalaria/imunologia , Resposta ao Choque Térmico , Hemócitos/imunologia , Interações Hospedeiro-Parasita/imunologia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Animais
5.
Fish Shellfish Immunol ; 88: 301-307, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849501

RESUMO

Freshwater snails are obligate intermediate hosts for numerous parasitic trematodes, most notably schistosomes. Schistosomiasis is a devastating human and veterinary illness, which is primarily controlled by limiting the transmission of these parasites from their intermediate snail hosts. Understanding how this transmission occurs, as well as the basic immunobiology of these snails may be important for controlling this disease in the future. Allelic variation in the Guadeloupe resistance complex (GRC) of Biomphalaria glabrata partially determines their susceptibility to parasitic infection, and can influence the microbiome diversity and microbial defenses in the hemolymph of these snails. In the present study, we examine the most abundant proteins present in the hemolymph of snails that are resistant or susceptible to schistosomes, as determined by their GRC genotype. Using proteomic analysis, we found that snails with different GRC genotypes have differentially abundant hemolymph proteins that are not explained by differences in transcription. There are 13 revealed hemolymph proteins that differ significantly between resistant and susceptible genotypes, nearly 40% of which are involved in immune responses. These findings build on the mounting evidence that genes in the GRC region have multiple physiological roles, and likely contribute more extensively to the general immune response than previously believed. These data also raise the intriguing possibility that the GRC region controls resistance to schistosomes, not directly, but indirectly via its effects on the snail's proteome and potentially its microbiome.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , Hemolinfa/química , Proteoma/genética , Animais , Biomphalaria/imunologia , Biomphalaria/microbiologia , Genótipo , Microbiota , Schistosoma mansoni/fisiologia
6.
Fish Shellfish Immunol ; 72: 111-116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107743

RESUMO

Freshwater snails are the intermediate hosts for numerous parasitic worms that are detrimental to human and agricultural health. Understanding the immune responses of these snails could be vital for finding ways to block transmission of those parasites. Allelic variation in a recently discovered genomic region in the snail, Biomphalaria glabrata, influences their susceptibility to schistosomes. Here we tested whether genes in that region, termed the Guadeloupe Resistance Complex (GRC), are involved in recognition of common pathogen-associated molecules that have been shown to be stimulants of the hydrogen peroxide defense pathway. We show that hemocytes extracted from individuals with one of the three GRC genotypes released less hydrogen peroxide than the other two genotypes, after stimulation with galactose. This difference was not observed after stimulation with several other microbial-associated carbohydrates, despite those ligands sharing the same putative pathway for hydrogen peroxide release. Therefore, we conclude that allelic variation in the GRC region may influence the recognition of galactose, rather than the conserved downstream steps in the hydrogen peroxide pathway. These results thus are consistent with the hypothesis that proteins produced by this region are involved in pathogen recognition.


Assuntos
Biomphalaria/genética , Biomphalaria/imunologia , Galactose/farmacologia , Variação Genética , Peróxido de Hidrogênio/metabolismo , Moléculas com Motivos Associados a Patógenos/farmacologia , Alelos , Animais , Hemócitos/imunologia , Interações Hospedeiro-Parasita
7.
J Hered ; 109(5): 604-609, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29566237

RESUMO

Freshwater snails are the intermediate hosts for numerous parasitic worms which can have negative consequences for human health and agriculture. Understanding the transmission of these diseases requires a more complete characterization of the immunobiology of snail hosts. This includes the characterization of its microbiome and genetic factors which may interact with this important commensal community. Allelic variation in the Guadeloupe resistance complex (GRC) genomic region of Guadeloupean Biomphalaria glabrata influences their susceptibility to schistosome infection and may have other roles in the snail immune response. In the present study, we examined whether a snail's GRC genotype has a role in shaping the bacterial diversity and composition present on or in whole snails. We show that the GRC haplotype, including the resistant genotype, has a significant effect on the diversity of bacterial species present in or on whole snails, including the relative abundances of Gemmatimonas aurantiaca and Micavibrio aeruginosavorus. These findings support the hypothesis that the GRC region is likely involved in pathways that can modify the microbial community of these snails and may have more immune roles in B. glabrata than originally believed. This is also one of few examples in which allelic variation at a particular locus has been shown to affect the microbiome in any species.


Assuntos
Alelos , Biomphalaria/genética , Biomphalaria/microbiologia , Variação Genética , Genoma , Microbiota , Animais , Haplótipos
8.
PLoS Genet ; 11(3): e1005067, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25775214

RESUMO

Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails.


Assuntos
Schistosoma mansoni/fisiologia , Esquistossomose mansoni/parasitologia , Caramujos/genética , Caramujos/parasitologia , Animais , Variação Genética , Interações Hospedeiro-Parasita , Humanos , Família Multigênica , Caramujos/imunologia , Índias Ocidentais
9.
Proc Natl Acad Sci U S A ; 109(1): 238-42, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22184236

RESUMO

Captive breeding programs are widely used for the conservation and restoration of threatened and endangered species. Nevertheless, captive-born individuals frequently have reduced fitness when reintroduced into the wild. The mechanism for these fitness declines has remained elusive, but hypotheses include environmental effects of captive rearing, inbreeding among close relatives, relaxed natural selection, and unintentional domestication selection (adaptation to captivity). We used a multigenerational pedigree analysis to demonstrate that domestication selection can explain the precipitous decline in fitness observed in hatchery steelhead released into the Hood River in Oregon. After returning from the ocean, wild-born and first-generation hatchery fish were used as broodstock in the hatchery, and their offspring were released into the wild as smolts. First-generation hatchery fish had nearly double the lifetime reproductive success (measured as the number of returning adult offspring) when spawned in captivity compared with wild fish spawned under identical conditions, which is a clear demonstration of adaptation to captivity. We also documented a tradeoff among the wild-born broodstock: Those with the greatest fitness in a captive environment produced offspring that performed the worst in the wild. Specifically, captive-born individuals with five (the median) or more returning siblings (i.e., offspring of successful broodstock) averaged 0.62 returning offspring in the wild, whereas captive-born individuals with less than five siblings averaged 2.05 returning offspring in the wild. These results demonstrate that a single generation in captivity can result in a substantial response to selection on traits that are beneficial in captivity but severely maladaptive in the wild.


Assuntos
Adaptação Fisiológica/genética , Peixes/genética , Linhagem , Animais , Cruzamento , Cruzamentos Genéticos , Feminino , Peixes/fisiologia , Masculino , Reprodução/fisiologia
10.
Bioinformatics ; 29(6): 725-32, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23365409

RESUMO

MOTIVATION: The goal of any parentage analysis is to identify as many parent-offspring relationships as possible, while minimizing incorrect assignments. Existing methods can achieve these ends, but they require additional information in the form of demographic data, thousands of markers and/or estimates of genotyping error rates. For many non-model systems, it is simply not practical, cost-effective or logistically feasible to obtain this information. Here, we develop a Bayesian parentage method that only requires the sampled genotypes to account for genotyping error, missing data and false matches. RESULTS: Extensive testing with microsatellite and SNP datasets reveals that our Bayesian parentage method reliably controls for the number of false assignments, irrespective of the genotyping error rate. When the number of loci is limiting, our approach maximizes the number of correct assignments by accounting for the frequencies of shared alleles. Comparisons with exclusion and likelihood-based methods on an empirical salmon dataset revealed that our Bayesian method had the highest ratio of correct to incorrect assignments.


Assuntos
Técnicas de Genotipagem , Animais , Teorema de Bayes , Frequência do Gene , Genótipo , Funções Verossimilhança , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Salmão/genética
11.
J Hered ; 105(1): 111-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24187426

RESUMO

Many declining populations are supplemented with captive-born individuals that are released directly into the wild. Because captive-born individuals can have lower fitness in the wild than their wild-born counterparts, a comprehensive understanding of the mechanisms responsible for the reduced fitness of these individuals is required for appropriate conservation and management decisions. Inbreeding among captive-born individuals is one plausible mechanism because captive breeding programs frequently use small numbers of breeders to create large numbers of siblings that are subsequently released together into the wild. We tested this hypothesis in a supplementation program for steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, for which first-generation hatchery fish were demonstrated to have lower fitness in the wild than their wild-born counterparts. To determine the contribution of inbreeding to this fitness decline, we first assigned 11 run-years of hatchery steelhead (3005 fish) back to their broodstock parents (462 fish) using 8 polymorphic microsatellite loci. By combining pedigree analyses with species-specific estimates of genetic load, we found that inbreeding could at most account for a 1-4% reduction in the fitness of hatchery fish relative to wild fish. Thus, inbreeding alone cannot adequately explain the 15% average fitness decline observed in first-generation hatchery fish from this population.


Assuntos
Aptidão Genética , Endogamia , Oncorhynchus mykiss/classificação , Oncorhynchus mykiss/genética , Animais , Aquicultura , Feminino , Loci Gênicos , Variação Genética , Masculino , Repetições de Microssatélites , Oregon , Linhagem , Filogeografia , Reprodução , Rios
12.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961413

RESUMO

Background: Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). Results: De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~944.2 Mb (6732 fragments, N50=1.067 Mb), comprising 23,598 genes (BUSCO=93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes were seen in African compared to South American lineages. Conclusions: The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.

13.
PeerJ ; 10: e13971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117535

RESUMO

Background: Biomphalaria glabrata is a snail intermediate host for Schistosoma mansoni, a trematode responsible for human schistosomiasis. BS90 is one of the most well studied strains of B. glabrata owing to its high resistance to infection by most strains of S. mansoni. An F2 mapping study from 1999 identified two RAPD markers that associated with what appeared to be single-locus, dominant resistance by the BS90 population relative to the susceptible M-line population. One marker cannot be mapped, but the other, OPM-04, maps to within 5 Mb of PTC2, a region we recently showed has a very large effect on resistance within another snail population challenged by the same strain of parasite (PR1). Here we tested the hypothesis that the PTC2 region contains the causal gene/s that explain the iconic resistance of BS90 snails. Methods: We used marker-assisted backcrossing to drive the BS90 version of the PTC2 region (+/-~1 Mb on either side) into an M-line (susceptible strain) genetic background, and the M-line version into a BS90 genetic background. We challenged the offspring with PR1-strain schistosomes and tested for effects of allelic variation in the PTC2 region in a common genetic background. Results: Relative to M-line haplotypes, the BS90 haplotype actually confers enhanced susceptibility. So we reject our original hypothesis. One possible explanation for our result was that the causal gene linked to OPM-04 is near, but not in the PTC2 block that we introgressed into each line. So we used an F2 cross to independently test the effects of the PTC2 and OPM-04 regions in a randomized genetic background. We confirmed that the BS90 haplotype confers increased susceptibility, and we see a similar, although non-significant effect at OPM-04. We discuss possible reasons why our results differed so dramatically from those of the 1999 study. We also present Pacbio assemblies of the PTC2 and flanking region in BS90 and M-line, compare with previously published PTC2 haplotypes, and discuss candidate genes that might be behind the enhanced susceptibility of the BS90 haplotype.


Assuntos
Biomphalaria , Schistosoma mansoni , Animais , Humanos , Schistosoma mansoni/genética , Biomphalaria/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Interações Hospedeiro-Parasita/genética , Caramujos/genética , Genótipo
14.
Mol Ecol ; 20(6): 1263-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21244538

RESUMO

In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykiss) have both freshwater resident and anadromous (ocean-going) life history forms, known as rainbow trout and steelhead, respectively. Juvenile hatchery steelhead that 'residualize' (become residents rather than go to sea as intended) provide a previously unmeasured route for gene flow from hatchery into wild populations. We apply a combination of parentage and grandparentage methods to a three-generation pedigree of steelhead from the Hood River, Oregon, to identify the missing parents of anadromous fish. For fish with only one anadromous parent, 83% were identified as having a resident father while 17% were identified as having a resident mother. Additionally, we documented that resident hatchery males produced more offspring with wild anadromous females than with hatchery anadromous females. One explanation is the high fitness cost associated with matings between two hatchery fish. After accounting for all of the possible matings involving steelhead, we find that only 1% of steelhead genes come from residualized hatchery fish, while 20% of steelhead genes come from wild residents. A further 23% of anadromous steelhead genes come from matings between two resident parents. If these matings mirror the proportion of matings between residualized hatchery fish and anadromous partners, then closer to 40% of all steelhead genes come from wild trout each generation. These results suggest that wild resident fish contribute substantially to endangered steelhead 'populations' and highlight the need for conservation and management efforts to fully account for interconnected Oncorhynchus mykiss life histories.


Assuntos
Genética Populacional/métodos , Animais , Cruzamento , Ecologia , Fluxo Gênico/genética , Humanos , Masculino , Repetições de Microssatélites/genética , Oncorhynchus mykiss/genética
15.
Mol Ecol ; 20(12): 2510-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21535278

RESUMO

Nonrandom recruitment of parasites among hosts can lead to genetic differentiation among hosts and mating dynamics that promote inbreeding. It has been hypothesized that strictly aquatic parasites with intermediate hosts will behave as panmictic populations among hosts because ample opportunity exists for random mixing of unrelated individuals during transmission to the definitive host. A previous allozyme study on the marine trematode Lecithochirium fusiforme did not support this hypothesis; in that, there was genetic differentiation among, and significant heterozygote deficiencies within, definitive hosts. We revisit this system and use microsatellites to obtain multilocus genotypes. Our goal was to determine whether cryptic subgroups and/or the presence of clones could account for the apparent deviation from 'panmixia'. We find strong evidence for cryptic subdivision (three genetic clusters) that causes the Wahlund effect and differentiation among definitive hosts. After accounting for these cryptic groups, we see panmictic genetic structure among definitive hosts that is consistent with the 'high mixing in aquatic habitats' hypothesis. We see evidence for cotransmission of clones in all three clusters, but this level of clonal structure did not have a major impact in causing deviations from Hardy-Weinberg equilibrium, and only affected genetic differentiation among hosts in one cluster. A cursory examination of the data may have led to incorrect conclusions about nonrandom transmission. However, it is obvious in this system that there is more than meets the eye in relation to the actual make-up of parasite populations. In general, the methods we employ will be useful for elucidating hidden patterns in other organisms where cryptic structure may be common (e.g. those with limited morphology or complex life histories).


Assuntos
Enguias/parasitologia , Variação Genética/genética , Estágios do Ciclo de Vida , Trematódeos/crescimento & desenvolvimento , Animais , Análise por Conglomerados , Copépodes/parasitologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Gastrópodes/parasitologia , Frequência do Gene , Genética Populacional , Genótipo , Heterozigoto , Interações Hospedeiro-Parasita/genética , Endogamia , Estágios do Ciclo de Vida/genética , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Modelos Genéticos , Reprodução/genética , Trematódeos/genética , Trematódeos/fisiologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária
16.
Mol Ecol ; 20(9): 1860-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21438931

RESUMO

Supplementation of wild salmonids with captive-bred fish is a common practice for both commercial and conservation purposes. However, evidence for lower fitness of captive-reared fish relative to wild fish has accumulated in recent years, diminishing the apparent effectiveness of supplementation as a management tool. To date, the mechanism(s) responsible for these fitness declines remain unknown. In this study, we showed with molecular parentage analysis that hatchery coho salmon (Oncorhynchus kisutch) had lower reproductive success than wild fish once they reproduced in the wild. This effect was more pronounced in males than in same-aged females. Hatchery spawned fish that were released as unfed fry (age 0), as well as hatchery fish raised for one year in the hatchery (released as smolts, age 1), both experienced lower lifetime reproductive success (RS) than wild fish. However, the subset of hatchery males that returned as 2-year olds (jacks) did not exhibit the same fitness decrease as males that returned as 3-year olds. Thus, we report three lines of evidence pointing to the absence of sexual selection in the hatchery as a contributing mechanism for fitness declines of hatchery fish in the wild: (i) hatchery fish released as unfed fry that survived to adulthood still had low RS relative to wild fish, (ii) age-3 male hatchery fish consistently showed a lower relative RS than female hatchery fish (suggesting a role for sexual selection), and (iii) age-2 jacks, which use a sneaker mating strategy, did not show the same declines as 3-year olds, which compete differently for females (again, implicating sexual selection).


Assuntos
Pesqueiros , Oncorhynchus kisutch/fisiologia , Oncorhynchus/fisiologia , Migração Animal/fisiologia , Animais , Conservação dos Recursos Naturais , Feminino , Humanos , Masculino , Preferência de Acasalamento Animal , Reprodução/genética
17.
PLoS One ; 16(12): e0257407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914737

RESUMO

Salmonid fish raised in hatcheries often have lower fitness (number of returning adult offspring) than wild fish when both spawn in the wild. Body size at release from hatcheries is positively correlated with survival at sea. So one explanation for reduced fitness is that hatcheries inadvertently select for trait values that enhance growth rate under the unnatural environment of a hatchery, but that are maladaptive in the wild environment. A simple prediction of this hypothesis is that juveniles of hatchery origin should grow more quickly than fish of wild origin under hatchery conditions, but should have lower survival under wild conditions. We tested that hypothesis using multiple full sibling families of steelhead (Oncorhynchus mykiss) that were spawned using either two wild parents (WxW) or two first-generation hatchery (HxH) parents. Offspring from all the families were grown together under hatchery conditions and under semi-natural conditions in artificial streams. HxH families grew significantly faster in the hatchery, but had significantly lower survival in the streams. That we see this tradeoff after only a single generation of selection suggests that the traits involved are under very strong selection. We also considered one possible alteration to the hatchery environment that might reduce the intensity of selection among families in size at release. Here we tested whether reducing the fat content of hatchery feed would reduce the variance among families in body size. Although fish raised under a low-fat diet were slightly smaller, the variation among families in final size was unchanged. Thus, there is no evidence that reducing the fat content of hatchery feed would reduce the opportunity for selection among families on size at release.


Assuntos
Domesticação , Pesqueiros , Oncorhynchus mykiss/crescimento & desenvolvimento , Animais , Rios
18.
Immunogenetics ; 62(5): 333-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20179920

RESUMO

Ranatuerins are antimicrobial peptides of the innate immune system found in ranid frogs. We previously presented evidence that a positive selective sweep had fixed a single allele at the Ranatuerin2 locus in the northern leopard frog (Rana pipiens). In this paper, we further investigate the evolutionary history of ranatuerins as follows. First, we sequenced Ranatuerin2 in additional individuals of R. pipiens and related frog species and compared diversity and divergence at these sequences with that at four putatively neutrally evolving loci. Second, we asked whether the evolutionary patterns observed at Ranatuerin2 were typical for ranatuerin loci by sequencing our samples at a paralogous locus, Ranatuerin2b, and performing the same neutrality tests. Ranatuerin2b also showed strong and significant evidence of at least one selective sweep. Third, we used the neutral loci to independently resolve conflicting hypotheses about phylogenetic relationships among our study species. Both the neutral loci and the ranatuerin loci supported an older phylogeny inferred from allozyme data and strongly rejected a more recent phylogeny inferred from mitochondrial DNA. Finally, in order to test whether the sweep was driven by the evolution of substantially new peptide function, we used the phylogeny to reconstruct the hypothetical Ranatuerin2 peptide that existed before the sweep. We synthesized this peptide and tested its activity and that of the extant peptide against six bacterial pathogens of frogs. We observed antibacterial activity but found no significant functional differences between the two peptides.


Assuntos
Proteínas de Anfíbios/genética , Proteínas de Anfíbios/imunologia , Evolução Molecular , Peptídeos/genética , Peptídeos/imunologia , Rana pipiens/genética , Rana pipiens/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos , Filogenia , Rana pipiens/classificação
19.
PeerJ ; 8: e9059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351792

RESUMO

There are increasing concerns regarding the role global climate change will have on many vector-borne diseases. Both mathematical models and laboratory experiments suggest that schistosomiasis risk may change as a result of the effects of increasing temperatures on the planorbid snails that host schistosomes. Heat pulse/heat shock of the BS90 strain of Biomphalaria glabrata was shown to increase the rate of infection by Schistosoma mansoni, but the result was not replicable in a follow up experiment by a different lab. We characterised the susceptibility and cercarial shedding of Guadeloupean B. glabrata after infection with S. mansoni under two temperature regimes: multigenerational exposure to small increases in temperature, and extreme heat pulse events. Neither long-term, multigenerational rearing at elevated temperatures, nor transient heat pulse modified the susceptibility of Guadeloupean B. glabrata to infection (prevalence) or shedding of schistosome cercaria (intensity of infection). These findings suggest that heat pulse-induced susceptibility in snail hosts may be dependent on the strain of the snail and/or schistosome, or on some as-yet unidentified environmental co-factor.

20.
Elife ; 92020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32845238

RESUMO

Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis.


Schistosomiasis is a widespread parasitic disease, affecting over 200 million people in tropical countries. It is caused by schistosome worms, which are carried by freshwater snails. These snails release worm larvae into the water, where they can infect humans ­ for example, after bathing or swimming. Treatment options for schistosomiasis are limited. Eliminating the freshwater snails is one way to control the disease, but this is not always effective in the long term and the chemicals used can also harm other animals in the water. Another way to manage schistosomiasis could be to stop the worms from infecting their snail host by breaking the parasites' life cycle without killing the snails. It is already known that some snails are naturally resistant to infection by some strains of schistosomes. Since this immunity is also inherited by the offspring of resistant snails, there is likely a genetic mechanism behind it. However, very little else is known about any genes that might be involved. Tennessen et al. therefore set out to identify what genes were responsible for schistosome resistance and how they worked. The experiments used a large laboratory colony of snails, whose susceptibility to schistosome infection varied among individual animals. To determine the genes behind this variation, Tennessen et al. first searched for areas of DNA that also differed between the immune and infected snails. Comparing genetic sequences across over 1,000 snails revealed a distinct region of DNA that had a large effect on how likely they were to be infected. This section of DNA turned out to be highly diverse, with different snails carrying varying numbers and different forms of the genes within this region. Many of these genes appear to encode proteins found on the surface of snail cells, which could affect whether snails and worms can recognize each other when they come into contact. This in turn could determine whether or not the worms can infect their hosts. These results shed new light on how the snails that carry schistosomes may be able to resist infections. In the future, this knowledge could be key to controlling schistosomiasis, either by releasing genetically engineered, immune snails into the wild (thus making it harder for the parasites to reproduce) or by using the snails' mechanism of resistance to design better drug therapies.


Assuntos
Biomphalaria , Resistência à Doença , Interações Hospedeiro-Parasita , Proteínas de Membrana , Esquistossomose mansoni , Animais , Biomphalaria/genética , Biomphalaria/imunologia , Biomphalaria/parasitologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Vetores de Doenças , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Família Multigênica/genética , Família Multigênica/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA