RESUMO
BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.
Assuntos
COVID-19 , Doenças Transmissíveis Importadas , Humanos , SARS-CoV-2/genética , Viagem , Doenças Transmissíveis Importadas/epidemiologia , COVID-19/epidemiologia , Filogenia , Busca de Comunicante , Alemanha/epidemiologia , GenômicaRESUMO
Age estimation based on the analysis of DNA methylation patterns has become a focus of forensic research within the past few years. However, there is little data available regarding postmortem DNA methylation analysis yet, and literature mainly encompasses analysis of blood from corpses without any signs of decomposition. It is not entirely clear yet which other types of specimen are suitable for postmortem epigenetic age estimation, and if advanced decomposition may affect methylation patterns of CpG sites. In living persons, buccal swabs are an easily accessible source of DNA for epigenetic age estimation. In this work, the applicability of this approach (buccal swabs as source of DNA) under different postmortem conditions was tested. Methylation levels of PDE4C were investigated in buccal swab samples collected from 73 corpses (0-90 years old; mean: 51.2) in different stages of decomposition. Moreover, buccal swab samples from 142 living individuals (0-89 years old; mean 41.2) were analysed. As expected, methylation levels exhibited a high correlation with age in living individuals (training set: r2 = 0.87, validation set: r2 = 0.85). This was also the case in postmortem samples (r2 = 0.90), independent of the state of decomposition. Only in advanced putrified cases with extremely low DNA amounts, epigenetic age estimation was not possible. In conclusion, buccal swabs are a suitable and easy to collect source for DNA methylation analysis as long as sufficient amounts of DNA are present.