Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 86(1): 191-198, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36563333

RESUMO

Organic cation transporter 1 (OCT1) is a liver-specific transporter and plays an essential role in drug disposition and hepatic lipid metabolism. Therefore, inhibition of OCT1 may not only lead to drug-drug interactions but also represent a potential therapy for fatty liver diseases. In this study, we systematically investigated the inhibitory effect of 200 natural products on OCT1-mediated uptake of 4,4-dimethylaminostyryl-N-methylpyridinium (ASP+) and identified 10 potent OCT1 inhibitors. The selectivity of these inhibitors over OCT2 was evaluated using both in vitro uptake assays and in silico molecular docking analyses. Importantly, benzoylpaeoniflorin was identified as the most potent OCT1 inhibitor with the highest selectivity over OCT2. Additionally, benzoylpaeoniflorin prevented lipid accumulation in hepatocytes, with concomitant activation of AMPK and down-regulation of lipogenic genes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). To conclude, our findings are of significant value in understanding OCT1-based natural product-drug interactions and provide a natural source of OCT1 inhibitors which may hold promise for treating fatty liver diseases.


Assuntos
Hepatopatias , Transportador 1 de Cátions Orgânicos , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Lipídeos , Simulação de Acoplamento Molecular , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
2.
Brain Res ; 1798: 148158, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368459

RESUMO

Chronic cerebral hypoperfusion (CCH) is a major risk factor for cognitive decline and degenerative processes. Shunaoxin dropping pill (SNX) has been clinically used to treat cerebrovascular diseases. However, the effect and mechanism of SNX in treating CCH-induced cognitive impairment remain unclear. In this study, CCH was induced in rats using permanent bilateral common carotid artery ligation (2-VO). CCH rats were characterized by impaired spatial learning and memory ability, as well as increased oxidative stress and inflammation in the hippocampus. Additionally, CCH rats had reduced richness and biodiversity of fecal microbiota, which showed a strong correlation with altered serum metabolites. SNX significantly improved the cognitive impairment and restored the dysbiosis of fecal microbiota and serum metabolites in CCH rats. Notably, SNX did not prevent cognitive impairment in antibiotics-treated CCH rats. Our findings suggest that the microbiota-gut-brain axis is a promising therapeutic target for the treatment of CCH-induced cognitive impairment.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Microbiota , Ratos , Animais , Eixo Encéfalo-Intestino , Isquemia Encefálica/metabolismo , Cognição , Hipocampo/metabolismo , Disfunção Cognitiva/metabolismo , Aprendizagem em Labirinto , Modelos Animais de Doenças
3.
Hum Exp Toxicol ; 40(12_suppl): S447-S459, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592875

RESUMO

The balance of cisplatin uptake and efflux, mediated mainly by organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1), respectively, determines the renal accumulation and nephrotoxicity of cisplatin. Using transporter-mediated cellular uptake assay, we identified wedelolactone (WEL), a medicinal plant-derived natural compound, is a competitive inhibitor of OCT2 and a noncompetitive inhibitor of MATE1. Wedelolactone showed a selectivity to inhibit OCT2 rather than MATE1. Cytotoxicity studies revealed that wedelolactone alleviated cisplatin-induced cytotoxicity in OCT2-overexpressing HEK293 cells, whereas it did not alter the cytotoxicity of cisplatin in various cancer cell lines. Additionally, wedelolactone altered cisplatin pharmacokinetics, reduced kidney accumulation of cisplatin, and ameliorated cisplatin-induced acute kidney injury in the Institute of Cancer Research mice. In conclusion, these findings suggest a translational potential of WEL as a natural therapy for preventing cisplatin-induced nephrotoxicity and highlight the need for drug-drug interaction investigations of WEL with other treatments which are substrates of OCT2 and/or MATE1.


Assuntos
Cisplatino/toxicidade , Cumarínicos/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/metabolismo , Animais , Antineoplásicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA