Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(16): 4783-4793, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579172

RESUMO

Human impacts, particularly nutrient pollution and land-use change, have caused significant declines in the quality and quantity of freshwater resources. Most global assessments have concentrated on species diversity and composition, but effects on the multifunctionality of streams and rivers remain unclear. Here, we analyse the most comprehensive compilation of stream ecosystem functions to date to provide an overview of the responses of nutrient uptake, leaf litter decomposition, ecosystem productivity, and food web complexity to six globally pervasive human stressors. We show that human stressors inhibited ecosystem functioning for most stressor-function pairs. Nitrate uptake efficiency was most affected and was inhibited by 347% due to agriculture. However, concomitant negative and positive effects were common even within a given stressor-function pair. Some part of this variability in effect direction could be explained by the structural heterogeneity of the landscape and latitudinal position of the streams. Ranking human stressors by their absolute effects on ecosystem multifunctionality revealed significant effects for all studied stressors, with wastewater effluents (194%), agriculture (148%), and urban land use (137%) having the strongest effects. Our results demonstrate that we are at risk of losing the functional backbone of streams and rivers if human stressors persist in contemporary intensity, and that freshwaters are losing critical ecosystem services that humans rely on. We advocate for more studies on the effects of multiple stressors on ecosystem multifunctionality to improve the functional understanding of human impacts. Finally, freshwater management must shift its focus toward an ecological function-based approach and needs to develop strategies for maintaining or restoring ecosystem functioning of streams and rivers.


Assuntos
Ecossistema , Rios , Agricultura , Efeitos Antropogênicos , Cadeia Alimentar , Humanos
2.
Environ Sci Pollut Res Int ; 30(10): 27030-27040, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36376647

RESUMO

Glyphosate-based herbicides can be harmful to the environment and human health. Especially in developing countries, these herbicides are often used indiscriminately in agricultural and urban areas. Here, we optimized a simple and efficient flow injection-based spectrophotometric method to monitor environmentally relevant glyphosate concentrations in surface waters. The method was then used to assess the environmental mobility of glyphosate in Southeast Brazil by monitoring surface runoff from experimental agricultural soil plots that received glyphosate applications in 2015. Further, water samples from low-order streams were collected in five agricultural, urban, and natural areas, as well as from the 5th-order Rio das Mortes during the rainy season. Finally, 20 drinking water sources were sampled in urban, rural, and agricultural areas. Runoff from reference plots without glyphosate application showed concentrations below the method's detection limit of 0.49 mg.L-1, whereas runoff from plots with standard glyphosate application had concentrations between 1.24 and 6.1 mg.L-1. Similarly, concentrations in natural stream water were below the detection limit, whereas agricultural streams had concentrations of up to 3.7 mg.L-1 (average: 0.97 mg.L-1). In an agricultural stream monitored weekly, concentration peaks were observed after glyphosate applications by farmers, and concentrations were correlated to stream discharge. Urban streams had concentrations of up to 5.8 mg.L-1 (average: 2.6 mg.L-1), but samples from the catchment's major river were mostly below detection limits, illustrating the dilution of urban and agricultural runoff in high-order rivers. In the sampled drinking water resources, glyphosate pollution occurred mainly in the rainy season, with detectable concentrations between 0.5 and 8.7 mg.L-1 in 80% of the sampled drinking water sources. In conclusion, our results suggest considerable environmental mobility of glyphosate in the studied Southeast Brazilian catchment. Substantial pollution, well above national and international limits, was detected in surface runoff, stream water, and drinking water resources.


Assuntos
Água Potável , Herbicidas , Poluentes Químicos da Água , Humanos , Brasil , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Herbicidas/análise , Glifosato
3.
Nat Ecol Evol ; 6(12): 1881-1890, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202923

RESUMO

Atmospheric nitrous oxide (N2O) is a potent greenhouse gas thought to be mainly derived from microbial metabolism as part of the denitrification pathway. Here we report that in unexplored peat soils of Central and South America, N2O production can be driven by abiotic reactions (≤98%) highly competitive to their enzymatic counterparts. Extracted soil iron positively correlated with in situ abiotic N2O production determined by isotopic tracers. Moreover, we found that microbial N2O reduction accompanied abiotic production, essentially closing a coupled abiotic-biotic N2O cycle. Anaerobic N2O consumption occurred ubiquitously (pH 6.4-3.7), with proportions of diverse clade II N2O reducers increasing with consumption rates. Our findings show that denitrification in tropical peat soils is not a purely biological process but rather a 'mosaic' of abiotic and biotic reduction reactions. We predict that hydrological and temperature fluctuations differentially affect abiotic and biotic drivers and further contribute to the high N2O flux variation in the region.


Assuntos
Desnitrificação , Óxido Nitroso , Óxido Nitroso/análise , Solo , Microbiologia do Solo , Hidrologia
4.
Sci Total Environ ; 550: 785-792, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26849342

RESUMO

Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts.

5.
Lipids ; 51(10): 1193-1206, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27631676

RESUMO

Eutrophication results in a deficiency of n-3 LC-PUFA (long-chain polyunsaturated fatty acids) in aquatic food chains, affecting fish nutrition and physiology. The trophic transfer of FA (fatty acids) to fish species of different feeding habits was investigated in two reservoirs in southeast Brazil-the mesotrophic Ponte Nova Reservoir (PN) and the hypereutrophic Billings Reservoir (Bil). Total FA profile of stomach contents and adipose tissue, triacylglycerols (TAG), and phospholipids (PL) from liver and muscle of the omnivorous Astyanax fasciatus and the carnivorous Hoplias malabaricus were analyzed by gas chromatography. A prevalence of n-6PUFA, as 18:2n-6 (linoleic acid) and 20:4n-6 (arachidonic acid, ARA) was observed in the stomach contents and in the tissues of A. fasciatus from the PN reservoir. In contrast, n-3 LC-PUFA, as 20:5n-3 (eicosapentaenoic acid, EPA) was accumulated in fish tissues from Bil, resulting in higher n3/n6 and EPA/ARA ratios, compared to fish from PN. This differential FA accumulation was also observed for H. malabaricus, but differences were slightly minor, and no changes were observed in the EPA/ARA ratios between fish from both reservoirs. Regardless reservoir, FA profiles of TAG resembled that of their diet, whereas FA profiles of PL were more conservative and mainly comprised by LC-PUFA. We conclude that reservoir trophic status affected the FA composition of food resources available to these fish species, resulting in differential allocation of n-3 and n-6 FA. As expected, FA profile of the investigated fish species also reflected their feeding habit and physiological demands.


Assuntos
Caraciformes/fisiologia , Ácidos Graxos/análise , Comportamento Alimentar , Tecido Adiposo/química , Animais , Brasil , Caraciformes/metabolismo , Ecossistema , Pesqueiros , Conteúdo Gastrointestinal/química , Fígado/química , Músculo Esquelético/metabolismo
6.
FEMS Microbiol Ecol ; 53(3): 393-400, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329958

RESUMO

The focus of our study was to determine whether the biochemical composition of two algivorous ciliates, both fed the same alga, resembles that of their diet. By comparing both ciliated protozoa we intended to identify species-specific differences in the metabolic features of these ciliates. Carbon- and cell-specific concentrations of fatty acids and essential amino acids were investigated for the ciliates Balanion planctonicum and Urotricha farcta grown on the cryptomonad Cryptomonas phaseolus. Stepwise discriminant analyses (SDA) indicated differences in the biochemical composition between ciliates and their diet and between the two ciliated protozoa. Carbon-specific fatty acid concentrations were usually higher in the ciliates than in their diet, especially concentrations of monounsaturated and some polyunsaturated fatty acids. Except for tryptophan, valine, and lysine, amino acid concentrations were higher in the ciliates than in C. phaseolus. Furthermore, differences in the polyunsaturated fatty acids accounted for the largest discrepancies between the two ciliated protozoa. The higher concentrations in the ciliates compared to their diet suggest that these species are capable of efficiently ingesting, assimilating or possibly synthesizing some fatty acids and amino acids. We conclude that dietary fatty acid and amino acid composition influences the composition of the two ciliated protozoa to a minor extent, and that species-specific differences in fatty acid and amino acid metabolism may be more important determinants of the biochemical composition of the studied ciliates. Moreover, the metabolism of polyunsaturated fatty acids seems to differ more profoundly between the two ciliated protozoa than the metabolism of other fatty acid classes or amino acids.


Assuntos
Aminoácidos Essenciais/metabolismo , Cilióforos/metabolismo , Criptófitas/metabolismo , Ácidos Graxos/metabolismo , Animais , Cilióforos/fisiologia , Dieta , Cadeia Alimentar , Água Doce , Especificidade da Espécie
7.
Sci Rep ; 5: 16328, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541809

RESUMO

Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

8.
FEMS Microbiol Ecol ; 77(3): 568-76, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21623845

RESUMO

We investigated how the lipid composition (fatty acids and sterols) of benthic microbial mats, which represent an important basal food resource for stream food webs, differs between tropical streams located in protected pristine and agricultural Cerrado savannah areas. The total microbial biomass and lipid composition differed significantly between pristine and agricultural streams in parallel with differences in water quality and hydrodynamic characteristics. Agricultural streams exhibited lower total biomass of benthic microbial mats than pristine streams. However, the higher concentrations of essential polyunsaturated fatty acids, such as linoleic acid (LIN, 18:2ω6), α-linolenic acid (ALA, 18:3ω3), and eicosapentaenoic acid (EPA, 20:5ω3), that were observed in agricultural streams suggest enhanced lipid complexity and a higher nutritional quality of the microbial community relative to pristine streams. Meanwhile, pristine stream microbial communities had higher total concentrations of saturated fatty acids and cholesterol than those of agricultural streams, reflecting their heterotrophic microbial communities. Moreover, stream morphotype and associated differences in the hydrodynamic characteristics affected the community composition and thereby also the lipid composition of microbial mats. Land-use-induced changes in the total biomass and lipid composition of microbial communities may affect the trophic transfer of energy in stream food webs, leading to changes in the composition and productivity of primary consumers and their predators, and thereby affecting stream ecosystem functioning.


Assuntos
Agricultura , Bactérias/química , Rios/química , Rios/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Ecossistema , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA