Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 477(16): 2999-3018, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32729927

RESUMO

Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Mutação , Catálise , Domínio Catalítico , Glutaratos/química , Humanos , Concentração de Íons de Hidrogênio , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitratos/química , Cinética , Conformação Proteica , Especificidade por Substrato
2.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922601

RESUMO

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as "undruggable" and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer's disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson's disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Humanos , Estrutura Molecular
3.
Biophys J ; 119(7): 1324-1334, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32888404

RESUMO

Bcl-xL is a major inhibitor of apoptosis, a fundamental homeostatic process of programmed cell death that is highly conserved across evolution. Because it plays prominent roles in cancer, Bcl-xL is a major target for anticancer therapy and for studies aimed at understanding its structure and activity. Although Bcl-xL is active primarily at intracellular membranes, most studies have focused on soluble forms of the protein lacking both the membrane-anchoring C-terminal tail and the intrinsically disordered loop, and this has resulted in a fragmented view of the protein's biological activity. Here, we describe the conformation of full-length Bcl-xL. Using NMR spectroscopy, molecular dynamics simulations, and isothermal titration calorimetry, we show how the three structural elements affect the protein's structure, dynamics, and ligand-binding activity in both its soluble and membrane-anchored states. The combined data provide information about the molecular basis for the protein's functionality and a view of its complex molecular mechanisms.


Assuntos
Apoptose , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteína bcl-X
4.
Biochemistry ; 59(4): 479-490, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31869219

RESUMO

Point mutations in human isocitrate dehydrogenase 1 (IDH1) can drive malignancies, including lower-grade gliomas and secondary glioblastomas, chondrosarcomas, and acute myeloid leukemias. These mutations, which usually affect residue R132, ablate the normal activity of catalyzing the NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG) while also acquiring a neomorphic activity of reducing αKG to d-2-hydroxyglutarate (D2HG). Mutant IDH1 can be selectively therapeutically targeted due to structural differences that occur in the wild type (WT) versus mutant form of the enzyme, though the full mechanisms of this selectivity are still under investigation. Here we probe the mechanistic features of the neomorphic activity and selective small molecule inhibition through a new lens, employing WaterMap and molecular dynamics simulations. These tools identified a high-energy path of water molecules connecting the inhibitor binding site with the αKG and NADP+ binding sites in mutant IDH1. This water path aligns spatially with the α10 helix from WT IDH1 crystal structures. Mutating residues at the termini of this water path specifically disrupted inhibitor binding and/or D2HG production, revealing additional key residues to consider in optimizing druglike molecules against mutant IDH1. Taken together, our findings from molecular simulations and mutant enzyme kinetic assays provide insight into how disrupting water paths through enzyme active sites can impact not only inhibitor potency but also substrate recognition and activity.


Assuntos
Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Sítios de Ligação/genética , Fenômenos Biofísicos , Catálise , Domínio Catalítico/genética , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitratos , Ácidos Cetoglutáricos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação/genética , Água/química
5.
J Biol Chem ; 293(52): 20169-20180, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30381397

RESUMO

The AAA+ ATPase p97 regulates ubiquitin-dependent protein homeostasis and has been pursued as a cancer drug target. The ATP-competitive inhibitor CB-5083 and allosteric inhibitor NMS-873 are the most advanced p97 inhibitors described to date. Previous studies have reported that their cytotoxicity can be readily overcome and involves single p97 mutations in the linker between the D1 and D2 ATPase domains and within D2. We report here that the proline 472 to leucine (P472L) mutation, in the D1-D2 linker and identified in CB-5083-resistant cells, desensitizes p97 to both inhibitor classes. This mutation does not disrupt the distinct D2-binding sites of the inhibitors. Instead, P472L changes ATPase domain communication within the p97 hexamer. P472L enhances cooperative D2 ATP binding and hydrolysis. This mechanism alters the function of the D1-D2 linker in the control of D2 activity involving the ATP-bound state of D1. Although increased D2 activity is sufficient to desensitize the P472L mutant to NMS-873, the mutant's desensitization to CB-5083 also requires D1 ATPase domain function. Our study highlights the remarkable adaptability of p97 ATPase domain communication that enables escape from mechanistically distinct classes of cytotoxic p97 inhibitors.


Assuntos
Adenosina Trifosfatases , Indóis/farmacologia , Mutação de Sentido Incorreto , Pirimidinas/farmacologia , Proteína com Valosina , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Células HCT116 , Humanos , Domínios Proteicos , Proteína com Valosina/antagonistas & inibidores , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
6.
J Biol Chem ; 293(23): 8922-8933, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678884

RESUMO

The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 µm at 25 °C to 50 µm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine.


Assuntos
Vírus da Dengue/química , Multimerização Proteica , Proteínas do Envelope Viral/química , Zika virus/química , Temperatura Corporal , Dengue/virologia , Humanos , Estabilidade Proteica , Proteínas Recombinantes/química , Vacinas de Subunidades Antigênicas/química , Vacinas Virais/química , Infecção por Zika virus/virologia
7.
Nat Chem Biol ; 13(6): 624-632, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346406

RESUMO

Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Bibliotecas de Moléculas Pequenas , Animais , Sítios de Ligação , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , Estrutura Molecular , Peso Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
8.
J Biomol NMR ; 67(3): 179-190, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28239773

RESUMO

The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail's biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13C or 1H detection, have very narrow line widths (0.40-0.60 ppm for 13C, 0.11-0.15 ppm for 1H, and 0.46-0.64 ppm for 15N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1H-detected solid-state NMR 1H/15N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1H/15N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/química , Fatores de Virulência/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Prótons por Ressonância Magnética , Soluções
9.
Biochemistry ; 54(46): 6951-60, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26507789

RESUMO

Mutations in the hinge region of cyanovirin-N (CVN) dictate its preferential oligomerization state. Constructs with the Pro51Gly mutation preferentially exist as monomers, whereas wild-type cyanovirin can form domain-swapped dimers under certain conditions. Because the hinge region is an integral part of the high-affinity binding site of CVN, we investigated whether this mutation affects the shape, flexibility, and binding affinity of domain B for dimannose. Our studies indicate that the capability of monomeric wild-type CVN to resist mechanical perturbations is enhanced when compared to that of constructs in which the hinge region is more flexible. Our computational results also show that enhanced flexibility leads to blocking of the binding site by allowing different rotational isomeric states of Asn53. Moreover, at higher temperatures, this observed flexibility leads to an interaction between Asn53 and Asn42, further hindering access to the binding site. On the basis of these results, we predicted that binding affinity for dimannose would be more favorable for cyanovirin constructs containing a wild-type hinge region, whereas affinity would be impaired in the case of mutants containing Pro51Gly. Experimental characterization by isothermal titration calorimetry of a set of cyanovirin mutants confirms this hypothesis. Those possessing the Pro51Gly mutation are consistently inferior binders.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Dissacarídeos/metabolismo , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Lectinas de Ligação a Manose/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
10.
Proc Natl Acad Sci U S A ; 109(22): 8576-81, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586082

RESUMO

αE-catenin, an essential component of the adherens junction, interacts with the classical cadherin-ß-catenin complex and with F-actin, but its precise role is unknown. αE-catenin also binds to the F-actin-binding protein vinculin, which also appears to be important in junction assembly. Vinculin and αE-catenin are homologs that contain a series of helical bundle domains, D1-D5. We mapped the vinculin-binding site to a sequence in D3a comprising the central two helices of a four-helix bundle. The crystal structure of this peptide motif bound to vinculin D1 shows that the two helices adopt a parallel, colinear arrangement suggesting that the αE-catenin D3a bundle must unfold in order to bind vinculin. We show that αE-catenin D3 binds strongly to vinculin, whereas larger fragments and full-length αE-catenin bind approximately 1,000-fold more weakly. Thus, intramolecular interactions within αE-catenin inhibit binding to vinculin. The actin-binding activity of vinculin is inhibited by an intramolecular interaction between the head (D1-D4) and the actin-binding D5 tail. In the absence of F-actin, there is no detectable binding of αE-catenin D3 to full-length vinculin; however, αE-catenin D3 promotes binding of vinculin to F-actin whereas full-length αE-catenin does not. These findings support the combinatorial or "coincidence" model of activation in which binding of high-affinity proteins to the vinculin head and tail is required to shift the conformational equilibrium of vinculin from a closed, autoinhibited state to an open, stable F-actin-binding state. The data also imply that αE-catenin must be activated in order to bind to vinculin.


Assuntos
Vinculina/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Actinas/química , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Caderinas/química , Caderinas/genética , Caderinas/metabolismo , Calorimetria/métodos , Galinhas , Dicroísmo Circular , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Vinculina/química , Vinculina/genética , alfa Catenina/química , alfa Catenina/genética , beta Catenina/química , beta Catenina/genética
11.
Proc Natl Acad Sci U S A ; 108(49): 19587-92, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22114188

RESUMO

Although numerous carbohydrates play significant roles in mammalian cells, carbohydrate-based drug discovery has not been explored due to the technical difficulty of chemically synthesizing complex carbohydrate structures. Previously, we identified a series of carbohydrate mimetic peptides and found that a 7-mer peptide, designated I-peptide, inhibits hematogenous carbohydrate-dependent cancer cell colonization. During analysis of the endothelial surface receptor for I-peptide, we found that I-peptide bound to annexin 1 (Anxa1). Because Anxa1 is a highly specific tumor vasculature surface marker, we hypothesized that an I-peptide-like peptide could target anticancer drugs to the tumor vasculature. This study identifies IFLLWQR peptide, designated IF7, as homing to tumors. When synthetic IF7 peptide was conjugated to fluorescent Alexa 488 (A488) and injected intravenously into tumor-bearing mice, IF7-A488 targeted tumors within minutes. IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying human colon HCT116 tumors efficiently suppressed tumor growth at low dosages with no apparent side effects. These results suggest that IF7 serves as an efficient drug delivery vehicle by targeting Anxa1 expressed on the surface of tumor vasculature. Given its extremely specific tumor-targeting activity, IF7 may represent a clinically relevant vehicle for anticancer drugs.


Assuntos
Carboidratos/química , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Anexina A1/química , Anexina A1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Camptotecina/química , Camptotecina/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células HCT116 , Humanos , Hidrazinas/química , Injeções Intravenosas , Irinotecano , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mimetismo Molecular , Dados de Sequência Molecular , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Peptídeos/administração & dosagem , Peptídeos/química , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
12.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260668

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

13.
Res Sq ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38464189

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

14.
Nat Commun ; 15(1): 3785, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710674

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employ static and dynamic structural methods and observe that, compared to R132H, the R132Q active site adopts a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling reveals a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.


Assuntos
Domínio Catalítico , Isocitrato Desidrogenase , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Cinética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia
15.
Protein Sci ; 32(9): e4759, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37574787

RESUMO

Proteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as "on-path" were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16-N21, bound to Group I peptides, while N21 did not. Here, we identified single-point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic-based computational design. Comparison of the docked position of the CC16-N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16-N21. We found that swapping these positions in N21 with matched residues from CC16-N21 recovers nature-like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins.


Assuntos
Mutação com Ganho de Função , Proteínas , Ligantes , Domínios WW , Sequência de Aminoácidos , Proteínas/química , Peptídeos/química , Dobramento de Proteína
16.
J Biol Chem ; 285(17): 13211-22, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20167601

RESUMO

The Dock180 family of atypical Rho family guanine nucleotide exchange factors (Rho-GEFs) regulate a variety of processes involving cellular or subcellular polarization, including cell migration and phagocytosis. Each contains a Dock homology region-1 (DHR-1) domain that is required to localize its GEF activity to a specific membrane compartment where levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) are up-regulated by the local activity of PtdIns 3-kinase. Here we define the structural and energetic bases of phosphoinositide specificity by the DHR-1 domain of Dock1 (a GEF for Rac1), and show that DHR-1 utilizes a C2 domain scaffold and surface loops to create a basic pocket on its upper surface for recognition of the PtdIns(3,4,5)P(3) head group. The pocket has many of the characteristics of those observed in pleckstrin homology domains. We show that point mutations in the pocket that abolish phospholipid binding in vitro ablate the ability of Dock1 to induce cell polarization, and propose a model that brings together recent mechanistic and structural studies to rationalize the central role of DHR-1 in dynamic membrane targeting of the Rho-GEF activity of Dock180.


Assuntos
Modelos Moleculares , Proteínas rac de Ligação ao GTP/química , Animais , Sítios de Ligação , Proteínas do Citoesqueleto , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Família Multigênica/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
17.
J Phys Chem B ; 125(10): 2617-2626, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33687216

RESUMO

Earlier experiments suggest that the evolutionary information (conservation and coevolution) encoded in protein sequences is necessary and sufficient to specify the fold of a protein family. However, there is no computational work to quantify the effect of such evolutionary information on the folding process. Here we explore the role of early folding steps for sequences designed using coevolution and conservation through a combination of computational and experimental methods. We simulated a repertoire of native and designed WW domain sequences to analyze early local contact formation and found that the N-terminal ß-hairpin turn would not form correctly due to strong non-native local contacts in unfoldable sequences. Through a maximum likelihood approach, we identified five local contacts that play a critical role in folding, suggesting that a small subset of amino acid pairs can be used to solve the "needle in the haystack" problem to design foldable sequences. Thus, using the contact probability of those five local contacts that form during the early stage of folding, we built a classification model that predicts the foldability of a WW sequence with 81% accuracy. This classification model was used to redesign WW domain sequences that could not fold due to frustration and make them foldable by introducing a few mutations that led to the stabilization of these critical local contacts. The experimental analysis shows that a redesigned sequence folds and binds to polyproline peptides with a similar affinity as those observed for native WW domains. Overall, our analysis shows that evolutionary-designed sequences should not only satisfy the folding stability but also ensure a minimally frustrated folding landscape.


Assuntos
Dobramento de Proteína , Proteínas , Sequência de Aminoácidos , Funções Verossimilhança , Modelos Moleculares , Proteínas/genética
18.
Structure ; 29(9): 1029-1039.e3, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33878292

RESUMO

PLEKHA7 (pleckstrin homology domain containing family A member 7) plays key roles in intracellular signaling, cytoskeletal organization, and cell adhesion, and is associated with multiple human cancers. The interactions of its pleckstrin homology (PH) domain with membrane phosphatidyl-inositol-phosphate (PIP) lipids are critical for proper cellular localization and function, but little is known about how PLEKHA7 and other PH domains interact with membrane-embedded PIPs. Here we describe the structural basis for recognition of membrane-bound PIPs by PLEHA7. Using X-ray crystallography, nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the interaction of PLEKHA7 with PIPs is multivalent, distinct from a discrete one-to-one interaction, and induces PIP clustering. Our findings reveal a central role of the membrane assembly in mediating protein-PIP association and provide a roadmap for understanding how the PH domain contributes to the signaling, adhesion, and nanoclustering functions of PLEKHA7.


Assuntos
Proteínas de Transporte/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica
19.
Nature ; 430(6999): 583-6, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15195105

RESUMO

Vinculin is a highly conserved intracellular protein with a crucial role in the maintenance and regulation of cell adhesion and migration. In the cytosol, vinculin adopts a default autoinhibited conformation. On recruitment to cell-cell and cell-matrix adherens-type junctions, vinculin becomes activated and mediates various protein-protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell-adhesion molecules. Here we describe the crystal structure of the full-length vinculin molecule (1,066 amino acids), which shows a five-domain autoinhibited conformation in which the carboxy-terminal tail domain is held pincer-like by the vinculin head, and ligand binding is regulated both sterically and allosterically. We show that conformational changes in the head, tail and proline-rich domains are linked structurally and thermodynamically, and propose a combinatorial pathway to activation that ensures that vinculin is activated only at sites of cell adhesion when two or more of its binding partners are brought into apposition.


Assuntos
Vinculina/química , Vinculina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Varredura Diferencial de Calorimetria , Adesão Celular , Galinhas , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140526, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853772

RESUMO

The human IκB Kinase (IKK) is a multisubunit protein complex of two kinases and one scaffolding subunit that controls induction of transcription factor NF-κB activity. IKK behaves as an entity of aberrantly high apparent molecular weight in solution. Recent X-ray crystallographic and cryo-electron microscopy structures of individual catalytic subunits (IKK1/IKKα and IKK2/IKKß) reveal that they are both stably folded dimeric proteins that engage in extensive homo-oligomerization through unique surfaces that are required for activation of their respective catalytic activities. The NEMO/IKKγ subunit is a predominantly coiled coil protein that is required for activation of IKK through the canonical NF-κB signaling pathway. Here we report size-exclusion chromatography, multi-angle light scattering, analytical centrifugation, and thermal denaturation analyses of full-length human recombinant NEMO as well as deletion and disease-linked variants. We observe that NEMO is predominantly a dimer in solution, although by virtue of its modular coiled coil regions NEMO exhibits complicated solution dynamics involving portions that are mutually antagonistic toward homodimerization. This behavior causes NEMO to behave as a significantly larger sized particle in solution. Analyses of NEMO in complex with IKK2 indicate that NEMO preserves this structurally dynamic character within the multisubuit complex and provides the complex-bound IKK2 further propensity toward homo-oligomerization. These observations provide critical information on the structural plasticity of NEMO subunit dimers which helps clarify its role in diseases and in IKK regulation through oligomerization-dependent phosphorylation of catalytic IKK2 subunit dimers.


Assuntos
Quinase I-kappa B/química , Complexos Multiproteicos/química , Multimerização Proteica , Humanos , Hidrodinâmica , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Mutantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes , Soluções , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA