Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 179: 156627, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38703436

RESUMO

Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs). The homology studies by multiple sequence alignment show that excepting LdMAPK1 and LdMAPK2, all thirteen other LdMAPKs share homology with human ERK and p38 isoforms. Expression of LdMAPK4 and LdMAPK5 is less in avirulent promastigotes and amastigotes. Compared to miltefosine-sensitive L. donovani parasites, miltefosine-resistant parasites have higher LdMAPK1, LdMAPK3-5, LdMAPK7-11, LdMAPK13, and LdMAPK14 expression. IL-4-treatment of macrophages down-regulated LdMAPK11, in virulent amastigotes whereas up-regulated LdMAPK5, but down-regulated LdMAPK6, LdMAPK12-15, expression in avirulent amastigotes. IL-4 up-regulated LdMAPK1 expression in both virulent and avirulent amastigotes. IFN-γ-treatment down-regulated LdMAPK6, LdMAPK13, and LdMAPK15 in avirulent amastigotes but up-regulated in virulent amastigotes. This complex profile of LdMAPKs expression among virulent and avirulent parasites, drug-resistant parasites, and in amastigotes within IL-4 or IFN-γ-treated macrophages suggests that LdMAPKs are differentially controlled at the host-parasite interface regulating parasite survival and differentiation, and in the course of IL-4 or IFN-γ dominated immune response.


Assuntos
Interações Hospedeiro-Parasita , Leishmania donovani , Macrófagos , Proteínas Quinases Ativadas por Mitógeno , Leishmania donovani/enzimologia , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Camundongos , Macrófagos/parasitologia , Macrófagos/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Interferon gama/metabolismo , Resistência a Medicamentos
2.
Cytokine ; 174: 156475, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134556

RESUMO

Leishmania donovani causes the potentially fatal disease visceral leishmaniasis for which neither a vaccine nor an adjuvant for human use exists. Although interleukin-7 (IL-7) is implicated in CD4+ T-cell response stabilization, its anti-leishmanial function is uncertain. Therefore, we examined whether IL-7 would potentiate the efficacy of Leishmania major-expressed MAPK10 (LmjMAPK10; M10)-elicited anti-leishmanial host-protective response. We observed that aligning with IL-7R expression, IL-7 increased IFN-γ-secreting TH1 cell but reduced IL-4-producing TH2 cells and production of IL-10 and TGF-ß effectuating anti-leishmanial functions in susceptible BALB/c mouse-derived macrophages. Co-culturing IL-7-pre-treated L. donovani-infected macrophages with L. donovani-infected BALB/c-derived T cells induced IFN-γ-dominated TH1 type anti-leishmanial function. IL-7 treatment of L. donovani-infected BALB/c mice significantly reduced splenic and hepatic parasite loads. Co-culturing CD4+ T cells from IL to 7-treated mice with L. donovani-infected macrophages reduced amastigote numbers suggesting IL-7-elicited host-protective effector T cells. Priming BALB/c with M10 + IL-7 reduced the splenic parasite burden more effectively than that was observed in M10-primed mice. An enhanced protection against L. donovani infection was accompanied by enhanced IL-12 and IFN-γ, but suppressed IL-10 and IL-4, response and host-protective TH1 and memory T cells. These results indicate IL-7-induced leishmanial antigen-specific memory T cell response that protects a susceptible host against L. donovani infection.


Assuntos
Adjuvantes de Vacinas , Interleucina-7 , Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Proteína Quinase 10 Ativada por Mitógeno , Vacinas contra Leishmaniose/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Proteína Quinase 10 Ativada por Mitógeno/imunologia , Receptores de Interleucina-7/metabolismo , Interleucina-7/administração & dosagem , Interferon gama/metabolismo , Células Th1/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Leishmania major/imunologia , Técnicas de Cocultura , Células T de Memória/imunologia , Baço/parasitologia , Fígado/parasitologia , Apresentação de Antígeno
3.
Int Immunopharmacol ; 129: 111589, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38295542

RESUMO

The protozoan parasite Leishmania donovani resides within mammalian macrophages and alters its antigen-presenting functions to negatively regulate host-protective T cell responses. This negative regulation of human T cell responses in vitro is attributed to myotubularin-related protein-6 (MTMR6), an ion channel-associated phosphatase. As mouse and human MTMR6 share homology, we studied whether MTMR6 silencing by lentivirally expressed MTMR6shRNA (Lv-MTMR6shRNA) reduced Leishmania growth in macrophages and whether MTMR6 silencing in Leishmania-susceptible BALB/c mice reduced the infection and reinstated host-protective T cell functions. MTMR6 silencing reduced amastigote count and IL-10 production, increased IL-12 expression and, induced IFN-γ-secreting T cells with anti-leishmanial activity in macrophage-T cell co-cultures. Lv-MTMR6shRNA reduced the infection, accompanied by increased IFN-γ expression, in susceptible BALB/c mice. Delays in Lv-MTMR6shRNA treatment by 7 days post-infection significantly reduced the infection suggesting MTMR6 as a plausible therapeutic target. Priming of BALB/c mice with avirulent parasites and Lv-MTMR6shRNA reduced parasite burden in challenge infection. These results indicate that MTMR6 is the first receptor-regulated ion channel-associated phosphatase regulating anti-leishmanial immune responses.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Camundongos , Humanos , Animais , Proteínas Tirosina Fosfatases não Receptoras/genética , Camundongos Endogâmicos BALB C , Canais Iônicos , Mamíferos
4.
Int Immunopharmacol ; 129: 111644, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38330797

RESUMO

Residing obligatorily as amastigotes within the mammalian macrophages, the parasite Leishmania donovani inflicts the potentially fatal, globally re-emerging disease visceral leishmaniasis (VL) by altering intracellular signaling through kinases and phosphatases. Because the phosphatases that modulate the VL outcome in humans remained unknown, we screened a human phosphatase siRNA-library for anti-leishmanial functions in THP-1, a human macrophage-like cell line. Of the 251 phosphatases, the screen identified the Ca++-activated K+-channel-associated phosphatase myotubularin-related protein-6 (MTMR6) as the only phosphatase whose silencing reduced parasite load and IL-10 production in human macrophages. Virulent, but not avirulent, L. donovani infection increased MTMR6 expression in macrophages. As virulent L. donovani parasites expressed higher lipophosphoglycan, a TLR2-ligand, we tested the effect of TLR2 stimulation or blockade on MTMR6 expression. TLR1/TLR2-ligand Pam3CSK4 enhanced, but TLR2 blockade reduced, MTMR6 expression. L. donovani infection of macrophages ex vivo increased, but miltefosine treatment reduced, MTMR6 expression. Corroboratively, compared to endemic controls, untreated VL patients had higher, but miltefosine-treated VL patients had reduced, MTMR6 expression. The phosphatase siRNA-library screening thus identified MTMR6 as the first TLR2-modulated ion channel-associated phosphatase with significant implications in VL patients and anti-leishmanial functions.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Fosforilcolina , Animais , Humanos , Canais Iônicos , Leishmaniose Visceral/parasitologia , Ligantes , Mamíferos , Fosforilcolina/análogos & derivados , Proteínas Tirosina Fosfatases não Receptoras , RNA Interferente Pequeno/genética , Receptor 2 Toll-Like
5.
Int Immunopharmacol ; 134: 112100, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728877

RESUMO

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.


Assuntos
Antígenos CD40 , Leishmania major , Leishmaniose Cutânea , Macrófagos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Animais , Leishmania major/imunologia , Leishmania major/fisiologia , Antígenos CD40/metabolismo , Camundongos , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Humanos , Feminino , Fosforilação , Interações Hospedeiro-Parasita/imunologia , Sistema de Sinalização das MAP Quinases/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA